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A MATRIX FORMULATION OF THE MIXED TYPE LINEAR

VOLTERRA-FREDHOLM INTEGRAL EQUATIONS
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Abstract. In this paper we present an operational method for solving
linear Volterra-Fredholm integral equations (VFIE). The method is con-
structed based on three matrices with simple structures which lead to a
simple and high accurate algorithm. We also present an error estimation
and demonstrate accuracy of the method by numerical examples.

AMS Mathematics Subject Classification : 65R20.
Key words and phrases : Mixed type Volterra-Fredholm integral equations,
Operational matrices, error estimation.

1. Introduction

Consider a mixed type VFIE of the form

u(t, x) = f(t, x) + λ

∫ t

0

∫

Ω

G(t, s, x, ξ)g(u(s, ξ))dξds (1)

where λ ∈ R, t ∈ I := [0, T ], x ∈ Ω ⊂ Rd(d = 1, 2, 3) and Ω is closed and
bounded. For g(x) = x, equation (1) is linear, otherwise it is a nonlinear
equation. Here we assume that the given real valued functions f := f(t, x),
G := G(t, s, x, ξ) and g := g(x) are at least continuous on D = [0, T ] × Ω, S
(where S := {(t, s, x, ξ) : 0 ≤ s ≤ t ≤ T, (x, ξ) ∈ Ω) and R respectively and
Ω := (a, b) ⊂ R (d = 1).
Equations of type (1) often arise from mathematical modeling of the spreading
in space and time, of some contagious disease in a population living in a habit
Ω [3] and in many physical and biological models. Existence and uniqueness
results for (1) may be found in [3,4,10]. In [5] for the linear case and in [6]
for the general case numerical solution of VFIE is carried out by continuose-
time and discrete-time spline collocation methods. In [7] certain choice of direct
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quadrature(DQ) applied for discretization in time for VFIE. In [8] the trape-
zoidal Nystrom method used for space and time and in [9] the Nystrom method
and direct quadrature method is used respectively for space and time and an
efficient solution of the nonlinear systems arising from discretization is given.

2. Linear equations and approximation with respect to spatial
variable

Let us consider the linear VFIE

u(t, x) = f(t, x) + λ

∫ t

0

∫ b

a

G(t, s, x, ξ) u(s, ξ) dξds (2)

and assume that X = [1, x, x2, · · · , xn]T be the standard basis and un(t, x) be
approximate solution of equation (2) for spatial part, that is

un(t, x) =

n∑

i=0

ui(t) x
i. (3)

We also assume that the given functions f and G are polynomials, otherwise
they can be approximated by suitable polynomials. Thus they can be written as

f(t, x) =

n∑

i=1

fi(t)x
i (4)

G(t, s, x, ξ) =

n∑

j=0

n∑

i=0

Gi,j(t, s)x
iξj (5)

where fi(t) and Gi,j(t, s), i, j = 0, 1, · · · , n are also polynomials or approxi-
mated by suitable polynomials. Substituting from (4) and (5) into (2) and
equating coefficient of xi for i = 0, 1, · · · , n yields the following system of
(n + 1) linear Volterra Integral Equations(VIEs) for the unknown functions
u0(t), u1(t), · · · , un(t)

ui(t) = fi(t) + λ

n∑

k=0

n∑

j=0

∫ t

0

Aj,kGi,j(t, s)uk(s)ds, i = 0, 1, · · · , n. (6)

where

Aj,k =
bj+k+1 − aj+k+1

j + k + 1
, j, k = 0, 1, · · · , n. (7)

Now let

G′
i,k(t, s) =

n∑

j=0

Gi,j(t, s)Aj,k

then Eq. (6) can be rewritten as

ui(t) = fi(t) + λ

∫ t

0

n∑

k=0

G′
i,k(t, s)uk(s)ds, i = 0, 1, · · · , n (8)

which is a system of linear second kind VIEs.
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To convert (8) to the corresponding system of linear algebraic equations, let

uim(t) '
m∑

p=0

uipt
p (9)

fi(t) '
m∑

p=0

fipt
p (10)

and

G′
i,k(t, s) '

m∑

l=0

m∑
q=0

G′
i,k,q,lt

lsq (11)

and substitute these approximations in (8) to get
m∑

p=0

uipt
p =

m∑
p=0

fipt
p +

n∑

k=0

m∑

l=0

m∑
q=0

m∑
p=0

G′
i,k,q,luk,p

tl+q+p+1

m+ q + 1
, i = 0, 1, · · · , n (12)

which is summarized by using matrix multiplication in

Unm(I − λG)T ′ = fnmT ′

or equivalently in

Unm(I − λG) = fnm (13)

where

Unm = [u00 u01 · · · u0m, u10 u11 · · · u1m, · · · , un0 un1 · · · unm],

fnm = [f00 f01 · · · f0m, f10 f11 · · · f1m, · · · , fn0 fn1 · · · fnm],

and

G =




G′′
00 G′′

01 · · · G′′
0n

G′′
10 G′′

11 · · · G′′
1n

...
...

...
G′′

n0 G′′
n1 · · · G′′

nn


 .

Note that T ′ contains n times the basis vector T = [1, t, · · · , tm]T and G is the

matrix representation of the integral part of (2) that contains the (m+1)×(m+1)
submatrices G′′

i,j , i, j = 0, 1, · · · , n. Thus G is an (m+1)(n+1)× (m+1)(n+1)

matrix and I is an (m + 1)(n + 1) × (m + 1)(n + 1) identity matrix. To find
columns of G′′

i,j , i, j = 0, 1, · · · , n, we equate coefficients of ti for i = 0, 1, · · · ,m
on both sides of (12) and obtain

(G′′
i,k)1 =




0
0
0
...
0




, (G′′
i,k)2 =




G′
i,k,0,0

0
0
...
0




(14)
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and

(G′′
i,k)q =




∑q−2
j=0

G′
i,k,q−j−2,j

j+1∑q−2
j=1

G′
i,k,q−j−2,j−1

j+1

...
G′

i,k,0,0

q−1

0
...
0




→ (q − 1)throw, q = 3, 4, · · ·m.
(15)

Consequently each block of G is an upper triangular matrix, which has useful

computational affects on solving system (13).
After solving the system (13), we will have an approximate solution for (2) of

the form

un,m(t, x) =

n∑

i=0

m∑

j=0

uijx
itj

where uij is the ((n+ 1)× (i− 1) + j)th component of Unm.

3. Computing blocks of G by using operational matrices

The operational matrices which firstly defined by E. Ortiz and M. Samara
for solving nonlinear differential equations [2] have useful computational effects
on the computing the blocks of G, since these blocks can be computed only by
using nonzero elements of these operational matrices. These matrices are

µ =




0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
..
.

..

.
..
.

..

.
. . .


 , η =




0 0 0 0 · · ·
1 0 0 0 · · ·
0 2 0 0 · · ·
0 0 3 0 · · ·
..
.

..

.
..
.

..

.
. . .




, ι =




0 1 0 0 · · ·
0 0 1/2 0 · · ·
0 0 0 1/3 · · ·
..
.

..

.
..
.

..

.
. . .


 .

Here we only use µ and ι for the matrix representation of integral part of (2).
To this end, we recall the following lemmas and theorems from [1].

Lemma 1. If yn(x) = a
n
X with a

n
= (a0, a1, · · · , an, 0, 0, · · · ) and X =

(1, x, x2, · · · , xn, · · · )T then
∫

yn(x)dx = a
n
ιX, xyn(x) = a

n
µX

Theorem 1. For
∫
k(x, t)yn(t)dt with k(x, t) =

∑
j

∑
i cijx

itj and yn(x) =

a
n
X = â

n
V where a

n
= (a0, a1, · · · , an, 0, 0, · · · ), â

n
= (â0, â1, · · · , ân, 0, 0, ...)we

have ∫ t

0

K(x, t)yn(t)dt = a
n
ΠlX = â

n
Π̂lV
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with

Πl =

n∑

i=0

n∑

j=0

ci,jµ
iιµj , Π̂l = VΠlV

−1

where V = {vi(x))}mi=0 is a polynomial basis given by V = V X, V is nonsingular
lower triangular matrix and V −1 is its inverse.

Lemma 2. For any given n× n matrix M = (mk,l), we have

(µjMµi)k,l =

{
mk+j,l−i, k = 1, 2, ..., n+ 1− j, l = i+ 1, ..., n+ 1

0, otherwise.

Lemma 3. For the matrix ι, we have

(µjιµi)k,k+i+j+1 =

{ 1
k+j , i, j, k = 1, 2, ..., n, k + i+ j + 1 ≤ n

0, otherwise.
(16)

Theorem 2. Let K(x, t) =
∑n

i=0

∑m
j=0 ci,jx

itj, then we have

∫ b

a

K(x, t)yn(t)dt = a
n
ΠFX = â

n
Π̂FV

where ΠF =
∑n

i=0

∑m
j=0 cij(ξ

(ij)(b) − ξ(ij)(a))eTi+1, denotes the matrix repre-

sentation for the Fredholm integral part of (2) and Π̂F = VΠFV
−1. ξ(ij) is to

denote ξ(a) = (ξ1, ξ2, · · · , ξn)T corresponding to the term xitj in the kernel. The
first n entries of it in x = a are as follows

ξk =

{
ak+j

k+j , k = 1, 2, ..., n− 1− j

0, otherwise.

ei+1 is the (i+ 1)th coordinate of the unit vector.

Theorem 3. Let K2(x, t) =
∑n

i=0

∑m
j=0 di,jx

itj, then we have
∫ x

a

k2(x, t)yn(t)dt = a
n
ΠV X = â

n
Π̂V V

where ΠV =
∑n

i=0

∑m
j=0 dij(µ

jιµi − ξ(ij)(a)eTi+1), stands for the matrix rep-

resentation of the Volterra integral part of (2). For other basis such as V ,

Π̂V = VΠV V
−1 must be calculated.

Now, in equation (2) for the matrix representation of interior integral, the
Fredholm part of equation, theorem 2 yields

G′ =
n∑

i=0

m∑

j=0

Gi,j(t, s)(ξ
(ij)(b)− ξ(ij)(a))eTi+1.

If we let G′
i,k =

∑m
l=0

∑m
q=0 G

′
i,k,q,lt

lsq =
∑m

l=0

∑m
q=0 cl,qt

lsq then the blocks of

G (i.e. G′′
i,j for i, j = 0, 1, · · · , n) are computed by ΠV,i,k with a = 0, since from
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theorem 3, we have
∫ t

0

G′
i,k(t, s)uk(s)ds = u

k
Πl,i,kT,

with

Πl,i,k =

m∑

i=0

m∑

j=0

ci,jµ
iιµj , u

k
= (uk0, uk1, · · · , ukm, 0, 0, · · · ),

where T = (1, t, t2, · · · , tm, ..)T .

4. Solving the system (13)

Since the diagonal blocks of the coefficient matrix, I−λG, are upper triangular
with diagonal entries 1 and its other blocks are strictly upper triangular matrices
of size (m+ 1)× (m+ 1),it takes the following form

(I−λG) =




1 −λG′′
0001 · · · −λG′′

000m 0 −λG′′
0n00 · · · −λG′′

0n0m
1 · · · −λG′′

001m · · · 0 · · · −λG′′
0n1m

. . .
.
.
.

. . .
.
.
.

1 &0

.

.

.
. . .

.

.

.

0 −λG′′
n001 · · · −λG′′

n00m 1 −λG′′
nn01 · · · −λG′′

nn0m
0 · · · −λG′′

n01m · · · 1 · · · −λG′′
nn1m

. . .
.
.
.

. . .
.
.
.

0 1




.

Hence we have the following simple formulas for solving (13)

uim = fim, i = 0, 1, · · · , n
and

uij = fij −
i−1∑
p=0

n∑
q=0

λG′′
piqjupq, j = 0, · · ·m− 1, i = 0, · · ·n.

Let us consider the linear operator K in the form of

K(u) =

∫ t

0

∫ b

a

G(t, s, x, ξ) u(s, ξ) dξds (17)

when the kernel of eq. (2) is not polynomial, its polynomial approximation is
substituted in (2) and corresponding operator is called Kn,m such that

lim
n,m→∞

‖K −Kn,m‖ = 0.

Thus from [12], we conclude (I −λKn,m)−1 exists for sufficiently large m,n and
it is a uniformly bounded operator which guarantees stability of eq. (2) for small
perturbation.
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5. Convergence

Consider linear Volterra integral equation(VIE)

u(t) = f(t) +

∫ t

0

K(t, s)u(s)ds, t ∈ [0, T ], (18)

where K(t, s) and f(t) assumed to be sufficiently smooth. Suppose that un(t)
is the approximate solution of degree n for (18) which exactly satisfies in

un(t) = fn(t) +

∫ t

0

Kn(t, s)un(s)ds, (19)

where fn(t) and Kn(t, s) are polynomial approximations of degree n for f(t) and
K(t, s), respectively such that ‖f − fn‖∞ → 0 and ‖K −Kn‖∞ → 0 as n → ∞.
On the other hand the exact solution of eq. (18) can be written as

u(t) = f(t) +

∫ t

0

Γ(t, s)f(s)ds,

where Γ(t, s) denotes the resolvent kernel for K(t, s) :

Γ(t, s) =

∞∑
m=0

K [m+1](t, s),

K [m+1](t, s) =

∫ t

0

K(t, y)K [m](y, s)dy, m ∈ N,

K [1](t, s) = K(t, s).

Similarly for the solution of eq. (19), we have

un(t) = fn(t) +

∫ t

0

Hn(t, s)fn(s)ds

with

Hn(t, s) =

∞∑
m=0

K [m+1]
n (t, s),

K [m+1]
n (t, s) =

∫ t

0

Kn(t, y)K
[m]
n (y, s)dy, m ∈ N,

K [1]
n (t, s) = Kn(t, s).

We show that lim
n→∞

un(x) = u(x). First we prove by induction on m that ‖K [m]
n −

K [m]‖ → 0 as n → ∞ for every m ∈ N. For m = 1, it is obvious. Let K
[m]
n (t, s)

converges uniformly to K [m](t, s). We show K
[m+1]
n → K [m+1] uniformly as

n → ∞.
SinceKn(t, y) andK

[m]
n (y, s) are bounded sequences on [0, T ], we can conclude

that Kn(t, y)K
[m]
n (y, s) converge to K(t, y)K [m](y, s) uniformly, in other word

uniform convergence of K
[m+1]
n (t, s)−K [m+1](t, s) to 0 is concluded. This result
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also implies uniform convergence of K
[m+1]
n (t, s)fn(s)−K [m+1](t, s)f(s) to 0 as

n → ∞. Thus

|un(t)− u(t)| ≤ |fn(t)− f(t)|+
∫ t

0

|Hn(t, s)fn(s)− Γ(t, s)f(s)|ds

= |fn(t)− f(t)|+
∫ t

0

|
∞∑

m=0

K [m+1]
n (t, s)fn(s)−K [m+1](t, s)f(s)|ds

≤ |fn(t)− f(t)|+
∫ t

0

∞∑
m=0

|K [m+1]
n (t, s)fn(s)−K [m+1](t, s)f(s)|ds

= |fn(t)− f(t)|+
∞∑

m=0

∫ t

0

|K [m+1]
n (t, s)fn(s)−K [m+1](t, s)f(s)|ds.

Since the sequence

SN :=

N∑
m=0

|K [m+1]
n (t, s)fn(s)−K [m+1](t, s)f(s)|

is increasing and it is uniformly convergent to 0, we used the monotone con-
vergence theorem (see [11], p. 49) to change order of summation and integral.

Therefore, by the uniform convergence of K
[m+1]
n (t, s)fn(s)−K [m+1](t, s)f(s) to

0, we have un(t) → u(t) as n → 0.
A similar argument for convergence of approximate solution is proved for

linear Fredholm integral equation.
The approximated solution, un,m(t, x) is obtained by two times application

of operational matrices. First we approximate the solution of (2) with respect
to fredholm part, so we have

‖un(t, x)− u(t, x)‖∞ → 0 as n → ∞.

Then by application of method on the system of linear VIEs in (8), we obtain

‖uim(t)− ui(t)‖∞ → 0 as n → ∞.

thus ‖un,m(t, x)− u(t, x)‖∞ → 0 is yield.

6. Error estimation for linear case

In this section, we give an error estimation for the approximate solution of
(2). Let un,m(t, x) be the approximate solution and en,m(t, x) = un,m(t, x) −
u(t, x), be the error function associated with un,m(t, x), where u(t, x) is the exact
solution of (2). Since un,m(t, x) is an approximate solution, it satisfies in

un,m(t, x) = f(t, x) + λ

∫ t

0

∫ b

a

G(t, s, x, ξ)un,m(s, ξ)dξds+Hn,m(t, x) (20)
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where Hn,m(t, x) is a perturbation term and it is obtained from

Hn,m(t, x) = un,m(t, x)− f(t, x)− λ

∫ t

0

∫ b

a

G(t, s, x, ξ)un,m(s, ξ)dξds, (21)

it is evident that Hn,m(t, x) → 0 as m,n → ∞.
Thus subtracting (20) from (2), yields the equation

en,m(t, x) = Hn,m(t, x) + λ

∫ t

0

∫ b

a

G(t, s, x, ξ)en,m(s, ξ)dξds (22)

for the error function en,m(t, x). To find an a approximation ên,m(t, x) to en,m(t, x),
we can solve Eq. (22) by the same way as we did for (2). In this case only the
function f(t, x) replaces by the perturbation term and the matrix representation
of integral part remains unchanged.

Now we obtain an upper bound for the norm of error depending on the prob-
lem data, by (22) we have

‖en,m‖∞ ≤ ‖Hn,m‖|∞ + λ‖en,m‖|∞γ,

where

γ = max
[0,T ]×[a,b]

∣∣∣∣∣∣

t∫

0

b∫

a

G(t, s, x, ξ) dξds

∣∣∣∣∣∣
,

and Hn,m is computed by (21). Hence by assuming |λ| < 1/γ, we have

‖en,m‖|∞ ≤ ‖Hn,m‖|∞
1− |λ|γ .

This implies uniform convergence of en,m(t, x) to 0.

7. Numerical Examples

In this section, we give some examples to clarify accuracy of the presented
method.
Remark. Note that as we mentioned previously, whenever G(t, s, x, ξ) or f(t, x)
are not polynomials, they must be approximated by polynomials of suitable de-
gree. Therefore in the following examples, we approximate all non-polynomial
parts of G(t, s, x, ξ) and f(t, x) by polynomials of degree m and n with respect to
t, s and x, ξ respectively. We obtain expansion of the exact solution exactly when
the exact solution is a bivariate polynomial of degree less than or equal to (m,n).

Example 1. Consider the linear Volterr-Fredholm integral equation

u(t, x) = f(t, x)− λ

∫ t

0

∫ 2

0

cos(x− ξ)es−tu(s, ξ)dξds (23)

where t ∈ [0, 2], λ = 1/3 and f(t, x) is chosen in such a way that the exact
solution of (23) to be u(t, x) = cos(x)exp(−t). Table 1 shows the absolute errors
at the selected points of [0, 2]× [0, 2].
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Table 1
m=n=10 m=n=15 m=n=20

(t,x) e(t,x) ê(t,x) e(t,x) ê(t,x) e(t,x) ê(t,x)

(0.0, 0.0) 0 0 0 0 0 0
(0.5,0.5) 7.093e-8 1.041e-8 8.732e-12 1.005e-11 2.090e-17 9.653e-16
(0.5,2.0) 1.828e-5 2.703e-6 6.371e-10 2.343e-11 1.148e-14 1.859e-15
(1.0,1.0) 3.951e-7 1.180e-7 2.675e-12 1.068e-11 1.441e-16 4.034e-16
(1.0, 1.5) 2.390e-7 9.356e-8 4.275e-12 7.036e-11 1.915e-16 5.404e-15
(1.5, 0.0) 4.032e-6 5.175e-6 1.092e-10 1.292e-10 5.183e-16 7.903e-16
(1.5, 1.5) 1.538e-6 2.384e-6 3.478e-11 6.307e-11 9.705e-17 4.728e-16
(2.0, 0.5) 1.113e-5 1.419e-4 1.022e-8 1.362e-8 1.797e-13 2.034e-13
(2.0, 2.0) 5.274e-5 4.472e-5 2.961e-9 3.724e-9 5.248e-14 6.502e-14

error bound 2.4503e-4 2.6095e-8 4.5183e-13

Example 2. The second example is linear problem in the form

u(t, x) = f(t, x) + λ

∫ t

0

∫ 1

0

(
eξ + s

)
u(s, ξ)dξds, (24)

where t ∈ [0, 1], λ = 1/5 and f(t, x) is chosen such that u(t, x) = exp(x) − t.
Absolute errors for this example reported in Table 2 at the randomly selected
points from (t, x) = (0.25i, 0.25j), i, j = 0, · · · , 4.

Table 2
m=n=10 m=n=15

(t,x) e(t,x) ê(t,x) e(t,x) ê(t,x)

(0.00, 0.00) 0 0 0 0
(0.25, 0.50) 9.3088e-10 1.1842e-9 1.2527e-15 2.9792e-15
(0.25, 1.00) 4.1522e-8 7.4227e-9 8.0051e-14 2.9792e-15
(0.50, 0.25) 1.9977e-9 1.5812e-9 2.6492e-15 6.0007e-15
(0.50, 0.75) 3.6722e-9 1.8485e-9 3.4389e-15 6.0007e-15
(0.75, 0.00) 3.0905e-9 2.0088e-9 4.2460e-15 9.1493e-15
(0.75, 0.75) 4.8342e-9 1.3278e-9 5.0357e-15 9.1493e-15
(1.00,0.50) 4.4659e-9 2.8246e-9 6.1105e-15 1.2552e-14
(1.00, 1.00) 4.5750e-8 3.6704e-8 8.4909e-14 1.2552e-14

error bound 8.6643e-8 1.5893e-13

Example 3. Consider the following linear problem

u(t, x) = f(t, x) + λ

∫ t

0

∫ 1

0

(
xξ2 + cos(s)

)
u(s, ξ)dξds (25)

where t ∈ [0, 1], λ = 1/2 and f(t, x) is such that u(t, x) = x sin(t) to be the exact
solution. Table 3 shows the absolute errors at (t, x) = (0.25i, 1 + 0.25j), i, j =
0, · · · , 4, randomly.
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Table 3
m=n=10 m=n=15

(t,x) e(t,x) ê(t,x) e(t,x) ê(t,x)

(0.00, 0.00) 0 0 0 0
(0.25, 0.50) 1.0167e-12 2.2362e-12 2.6045e-18 2.2745e-17
(0.25, 1.00) 1.1454e-12 1.3899e-12 2.9789e-18 2.3199e-17
(0.50, 0.25) 7.1362e-9 7.2694e-9 1.5360e-15 6.1469e-16
(0.50,0.75) 1.1169e-9 6.9624e-10 1.5022e-15 5.7304e-16
(0.75, 0.00) 9.3295e-8 5.8427e-8 9.9482e-13 3.7326e-13
(0.75,0.75) 9.0968e-8 5.4569e-8 9.6358e-13 3.3183e-13
(1.00, 0.50) 2.0480e-6 1.2030e-6 9.4635e-11 3.1758e-11
(1.00,0.00) 2.0142e-6 1.1437e-6 9.2664e-11 2.9030e-11

error bound 4.2222e-6 1.8409e-10

Example 4. The following linear example is solved in [9] by discretization
in space and time by numerical integration. There the accuracy of method is
defined by the number of correct digits cd at the end point (the maximal abso-
lute end point error is written as 10−cd). for this problem when the number of
mesh points is 32, the reported cd value is equal to 3.12.

u(t, x) = f(t, x) +

∫ t

0

∫ 2

1

(log(xξ + 1) cos(t− s))u(s, ξ)dξds, (26)

where t ∈ [0, 1] and f(t, x) such that u(t, x) = x3 cos(t) is the exact solution of
problem. Here we solve this problem by new method. Absolute errors for this ex-
ample reported at (t, x) = (0.25i, 1+0.25j), i, j = 0, · · · , 4, randomly, in Table 4.

Table 4
m=n=10 m=n=15

(t,x) e(t,x) ê(t,x) e(t,x) ê(t,x)

(0.00, 1.00) 0 0 0 0
(0.25, 1.25) 9.5587e-7 3.3901e-6 3.5402e-8 1.0074e-8
(0.25, 2.00) 6.6070e-6 2.0386e-5 2.7990e-7 9.1344e-7
(0.50, 1.00) 1.8920e-6 7.3305e-6 9.1032e-8 1.9914e-7
(0.50, 1.75) 2.4349e-6 9.6125e-6 2.3542e-8 2.2352e-8
(0.75, 1.25) 2.7962e-6 1.2966e-5 1.5543e-7 3.5878e-7
(0.75, 1.75) 3.5118e-6 1.3699e-5 7.6930e-7 1.1845e-7
(1.00, 1.25) 3.3679e-6 1.8711e-5 1.9567e-7 7.9876e-8
(1.00, 2.00) 1.9250e-5 6.9471e-5 9.1777e-7 2.0952e-7
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