DOI QR코드

DOI QR Code

MODIFIED HALPERN ITERATIVE ALGORITHMS FOR NONEXPANSIVE MAPPINGS

  • Sangago, Mengistu Goa (Department of Mathematics, Faculty of Computer and Mathematical Sciences, College of Natural Sciences, Addis Ababa University)
  • Received : 2010.08.20
  • Accepted : 2010.12.21
  • Published : 2011.09.30

Abstract

Halpern iterative algorithm is one of the most cited in the literature of approximation of fixed points of nonexpansive mappings. Different authors modified this iterative algorithm in Banach spaces to approximate fixed points of nonexpansive mappings. One of which is Hu [8] and Yao et al [21] modification of Halpern iterative algorithm for nonexpansive mappings in Banach spaces. It is the purpose of this paper to thoroughly analyze this modification and its convergence conditions. Unfortunately, Hu [8] and Yao et al [21] control conditions imposed on the modified Halpern iterative algorithm to have strong convergence are found to be not sufficient. In this paper, counterexamples are constructed to prove that the strong convergence conditions of Hu [8] and Yao et al [21] are not sufficient. It is also proved that with some additional conditions on the control parameters, strong convergence of the defined iterative algorithm is obtained in different Banach space settings.

Keywords

References

  1. H. H. Bauschke, The approximation of fixed points of compositions of nonexpansive map- pings in Hilbert space, J. Math. Anal. Appl. 202 (1996), 150-159. https://doi.org/10.1006/jmaa.1996.0308
  2. F. E. Browder, Convergence of approximants to fixed points of nonexpansive maps in Banach spaces, Arch. Rational Mech. Anal. 24 (1967), 82-90.
  3. F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Mathematische Zeitschrift 100 (1967), 201-225. https://doi.org/10.1007/BF01109805
  4. F. E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660-665. https://doi.org/10.1090/S0002-9904-1968-11983-4
  5. S. S. Chang, On Chidume's open questions and approximate solutions of multivalued strongly accretive mapping equations in Banach spaces, J. Math. Anal. Appl. 216 (1997), 94-111. https://doi.org/10.1006/jmaa.1997.5661
  6. K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press. Cambridge, 1990.
  7. B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
  8. L. G. Hu, Strong convergence of a modified Halperns iteration for nonexpansive mappings, Fixed Point Theory and Applications Volume 2008 (2008), Article ID 649162, 9 pages, doi:10.1155/2008/649162.
  9. P. L. Lions, Approximation de points fixes de contractions, C. R. Acad. Sci.Ser. A-B 284 (1977), 1357-1359.
  10. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0
  11. S. Reich, Strong convrgence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292. https://doi.org/10.1016/0022-247X(80)90323-6
  12. S. Reich, Some problems and results in fixed point theory, Contemp. Math. 21 (1983), 179-187.
  13. S. Reich, Approximating fixed points of nonexpansive mappings, Panamerican Mathematical Journal 4 (1994), 23-28.
  14. N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (1997), 3641-3645. https://doi.org/10.1090/S0002-9939-97-04033-1
  15. T. Suzuki, Reichs problem concerning Halperns convergence, Arch. Math. 92 (2009), 602- 613. https://doi.org/10.1007/s00013-009-2945-4
  16. S. Wang, A note on strong convergence of a modified Halperns iteration for nonexpansive mappings, Fixed Point Theory and Applications Volume 2010 (2010), Article ID 805326, 2 pages, doi:10.1155/2010/805326.
  17. R. WittMann, Approximation of fixed points of nonexpansive mappings, Archiv der Math- ematik 58 (1992), 486-491. https://doi.org/10.1007/BF01190119
  18. H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Australian Math. Soc. 65 (2002), 109-113. https://doi.org/10.1017/S0004972700020116
  19. H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002), 240-256. https://doi.org/10.1112/S0024610702003332
  20. H. K. Xu, An iterative approach to quadratic optimization, Journal of Optimization Theory and Applications 116 (2003), 659-678. https://doi.org/10.1023/A:1023073621589
  21. Y. Yao, Y. C. Liou, and H. Zhou, Strong convergence of an iterative method for nonexpansive mappings with new control conditions, Nonlinear Analysis 70 (2009), 2332-2336. https://doi.org/10.1016/j.na.2008.03.014
  22. H. Zegeye and N. Shahzad, Approximation methods for a common fixed point of a finite family of nonexpansive mappings, Numerical Functional Analysis and Optimization 28 (2007), 1405-1419. https://doi.org/10.1080/01630560701749730