References
- H. H. Bauschke, The approximation of fixed points of compositions of nonexpansive map- pings in Hilbert space, J. Math. Anal. Appl. 202 (1996), 150-159. https://doi.org/10.1006/jmaa.1996.0308
- F. E. Browder, Convergence of approximants to fixed points of nonexpansive maps in Banach spaces, Arch. Rational Mech. Anal. 24 (1967), 82-90.
- F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Mathematische Zeitschrift 100 (1967), 201-225. https://doi.org/10.1007/BF01109805
- F. E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660-665. https://doi.org/10.1090/S0002-9904-1968-11983-4
- S. S. Chang, On Chidume's open questions and approximate solutions of multivalued strongly accretive mapping equations in Banach spaces, J. Math. Anal. Appl. 216 (1997), 94-111. https://doi.org/10.1006/jmaa.1997.5661
- K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press. Cambridge, 1990.
- B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
- L. G. Hu, Strong convergence of a modified Halperns iteration for nonexpansive mappings, Fixed Point Theory and Applications Volume 2008 (2008), Article ID 649162, 9 pages, doi:10.1155/2008/649162.
- P. L. Lions, Approximation de points fixes de contractions, C. R. Acad. Sci.Ser. A-B 284 (1977), 1357-1359.
- Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0
- S. Reich, Strong convrgence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292. https://doi.org/10.1016/0022-247X(80)90323-6
- S. Reich, Some problems and results in fixed point theory, Contemp. Math. 21 (1983), 179-187.
- S. Reich, Approximating fixed points of nonexpansive mappings, Panamerican Mathematical Journal 4 (1994), 23-28.
- N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (1997), 3641-3645. https://doi.org/10.1090/S0002-9939-97-04033-1
- T. Suzuki, Reichs problem concerning Halperns convergence, Arch. Math. 92 (2009), 602- 613. https://doi.org/10.1007/s00013-009-2945-4
- S. Wang, A note on strong convergence of a modified Halperns iteration for nonexpansive mappings, Fixed Point Theory and Applications Volume 2010 (2010), Article ID 805326, 2 pages, doi:10.1155/2010/805326.
- R. WittMann, Approximation of fixed points of nonexpansive mappings, Archiv der Math- ematik 58 (1992), 486-491. https://doi.org/10.1007/BF01190119
- H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Australian Math. Soc. 65 (2002), 109-113. https://doi.org/10.1017/S0004972700020116
- H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002), 240-256. https://doi.org/10.1112/S0024610702003332
- H. K. Xu, An iterative approach to quadratic optimization, Journal of Optimization Theory and Applications 116 (2003), 659-678. https://doi.org/10.1023/A:1023073621589
- Y. Yao, Y. C. Liou, and H. Zhou, Strong convergence of an iterative method for nonexpansive mappings with new control conditions, Nonlinear Analysis 70 (2009), 2332-2336. https://doi.org/10.1016/j.na.2008.03.014
- H. Zegeye and N. Shahzad, Approximation methods for a common fixed point of a finite family of nonexpansive mappings, Numerical Functional Analysis and Optimization 28 (2007), 1405-1419. https://doi.org/10.1080/01630560701749730