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ON THE CONVERGENCE FOR ND RANDOM VARIABLES

WITH APPLICATIONS†

JONG-IL BAEK∗ AND HYE-YOUNG SEO

Abstract. We in this paper study the complete convergence and almost
surely convergence for arrays of rowwise pairwise negatively dependent(ND)
random variables (r.v.′s) which are dominated randomly by some random
variables and obtain a result dealing with complete convergence of linear
processes.
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1. Introduction

Lehmann(1996) first investigated various concepts of positive and negative
dependence in the bivariate case. Esary et al.(1967) introduced a concept of
association implying a strong form of positive dependence. Also, Esary and
Proschan(1972) introduced strong definitions of bivariate positive and nega-
tive dependence. Their concept has been very useful in reliability theory and
applications. Harris(1970),Brindly and Thompson(1972) initiated multivariate
generalizations for concepts of dependence. Ebrahimi and Ghosh(1981), Block
and Ting(1981) developed these concepts. In addition, for other related nega-
tive dependence concepts, many authors had been generalized and extended in
several directions;( see Jogdeo and Patil(1975), Karlin and Rinott(1980), Joag-
Dev and Proschan(1983), Matula(1992), Bozorgnia et al.(1996), Chandra and
Ghosal(1996a, 1996b), Amini et al.(2004), Bingham and Nili Sani(2004), and
Chen and Zhang(2007)). In particular, Hu et al.(1989) had obtained the follow-
ing result on complete convergence and they had established Theorem 1.1 for non
identically random variables when assumptions of independence between row-
wise of the array is made and Thrum(1974) had obtained the following almost
surely convergence in conditions of Theorem 1.2.
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Theorem 1.1. Let {Xnk|1 ≤ k ≤ n, n ≥ 1} be an array of rowwise independent
random variables with EXnk = 0. Suppose that {Xnk|1 ≤ k ≤ n, n ≥ 1}
are uniformly bounded by some random variable X. If E|X|2p < ∞ for some
1 ≤ p < 2, then

n−1/p
n∑

k=1

Xnk → 0 completely as n → ∞

if and only if E|X11|2p < ∞.

Theorem 1.2. Let {Xi|i ≥ 1} be a sequence of independent identically dis-
tributed (i.i.d.) r.v.′s with EX1 = 0 and let E|X1|2/α < ∞ for some 0 < α ≤ 1,∑n

i=1 a
2
ni = 1 and |ani| ≤ n−α/2.

Then,
n∑

i=1

ankXi → 0 a.s as n → ∞.

The main goal of our paper is to establish the above results for arrays of
rowwise pairwise ND r.v.′s. As an application, the corresponding results of
Zhang(1996) on i.i.d. random variables are extended to the ND setting. This
paper is organized as follows. In Section 2, we provide some definitions and
lemmas used in the proof of the main theorems. In Section 3, we derive a
general result for the complete convergence and strong convergence of weighted
sums of arrays of rowwise pairwise ND r.v.′s which are dominated randomly by
some random variables. In Section 4, we obtain a result dealing with complete
convergence of linear processes. Finally, we recall that a sequence {Xn|n ≥ 1}
of random variables is called stochastically bounded by a random variable X if
there exists a positive constant C such that P (|Xn| > t) ≤ CP (|X| > t) for
all n ≥ 1, t > 0. In this case we write {Xn} < X. Throughout this paper,
C represents positive constants whose values may change from one place to
another.

2. Preliminaries

For the proof of the theorems, we need to restate some definitions and lemmas
for easy reference.

Definition 2.1 ( Ebrahimi et al. [11] ). Random variables X and Y are ND if

P [X ≤ x, Y ≤ y] ≤ P [X ≤ x] P [Y ≤ y] (1)

for all x, y ∈ R. A collection of random variables is said to be pairwise ND if
every pair of random variables in the collection satisfies (1).
It is important to note that Definition 2.1 implies

P [X > x, Y > y] ≤ P [X > x] P [Y > y] (2)

for the x, y ∈ R. Moreover, it follows that (2) implies (1); hence, they are
equivalent for pairwise ND r.v′s. Ebrahimi et al.(1981) showed that(1) and (2)



On the convergence for ND random variables 1353

are not equivalent for random vectors of dimension greater than 2. Consequently,
we need the following definition to define sequences of negatively dependent
random variables.

Definition 2.2. The random variables X1, X2, · · · are said to be
(a) lower negatively dependent (LND) if for each n

P [X1 ≤ x1, . . . , Xn ≤ xn] ≤
n∏

i=1

P [Xi ≤ xi] (3)

for all x1, . . . , xn ∈ R,
(b) upper negatively dependent (UND) if for each n

P [X1 > x1, . . . , Xn > xn] ≤
n∏

i=1

P [Xi > xi] (4)

for all x1, . . . , xn ∈ R,
(c) negatively dependent (ND) if both (3) and (4) hold.

The following properties are listed for reference in obtaining the main result
in the next section and detailed proofs can be found in their paper.

Lemma 2.1 (Ebrahimi et al.[11]). If {Xn|n ≥ 1} is a sequence of ND r.v.′s
and {fn|n ≥ 1} is a sequence of monotone increasing with Borel functions, then
{fn(Xn)|n ≥ 1} is a sequence of ND r.v.′s.

Lemma 2.2 (Taylor et al.[21]). (a) If X1, . . . , Xn are ND r.v.′s and for any
real numbers {a1, . . . , an} and {b1, . . . , bn} such that ai < bi, 1 ≤ i ≤ n, then
{Yi, 1 ≤ i ≤ n} are ND r.v.′s, where Yi = biI(Xi > bi) + XiI(ai ≤ Xi ≤
bi) + aiI(Xi < ai). (b) If X1, . . . , Xn are pairwise ND r.v.′s, then EXiXj ≤
EXiEXj , i 6= j.

Lemma 2.3 (Burton and Dehling[7]). Let
∑∞

i=−∞ ai be an absolutely con-

vergent series of real numbers with a =
∑∞

i=−∞ ai, b =
∑∞

i=−∞ |ai|. Suppose
Φ : [−b, b] → R is a function satisfying the following conditions:
(i) Φ is bounded and continuous at a.
(ii) There exist δ > 0 and C > 0 such that for all |x| ≤ δ, |Φ(x)| ≤ C|x|.
Then limn→∞ 1

n

∑∞
i=−∞ Φ(

∑i+n
j=i+1 aj) = Φ(a).

Remark 2.1. Taking Φ(x) = |x|q, q ≥ 1, from Lemma 2.3 we have

lim
n→∞

1

n

∞∑

i=−∞
|

i+n∑

j=i+1

aj |q = |a|q.

3. Main Results

This result extends and generalizes the result of Hu et al.(1989) from the i.i.d.
case to the ND r.v.′s
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Theorem 3.1. Let α > 1/2, 0 < p < 2, αp ≥ 1 and let {Xni|1 ≤ i ≤ n, n ≥ 1}
be an array of rowwise pairwise ND r.v.′s with EXni = 0 for some α ≤ 1.
Suppose that h(x) > 0 is a slowly varying function as x → ∞ and let h(x) ≥
C > 0 for αp = 1.

If

{Xn} < X and E|X|ph(|X|1/α) < ∞,

then we have

∞∑
n=1

nαp−2h(n)P (|
n∑

i=1

Xni| ≥ εnα) < ∞ for all ε > 0.

Proof. Let Yi = nαI(Xni > nα) +XniI(|Xni| ≤ nα)− nαI(Xni < −nα).
Then for any ε > 0,

∞∑
n=1

nαp−2h(n)P (|
n∑

i=1

Xni| ≥ εnα)

≤
∞∑

n=1

nαp−2h(n)P (|
n∑

i=1

Yi| ≥ nαε/2)

+

∞∑
n=1

nαp−2h(n)

n∑

i=1

P (|Xni| ≥ nα)

= An +Bn (say) .

It is omitted, since we can easily prove that Bn < ∞.
Next, in order to prove that An < ∞, we first show that

n−α|
n∑

i=1

EYi| → 0, n → ∞.

n−α|
n∑

i=1

EYi|

≤ n−α
n∑

i=1

E|Xni|I(|Xni| ≤ nα) + nP (|Xni| > nα)

= I1(n) + I2(n) (say) .

It is omitted, since we also can easily get that I1(n) → 0, n → ∞ and I2(n) →
0, n → ∞.
Thus it suffices to show that

Cn =

∞∑
n=1

nαp−2h(n)P (|
n∑

i=1

(Yi − EYi)| ≥ εnα) < ∞ for all ε > 0.
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Thus, {(Yi − EYi)|i ≥ 1} is still a sequence of ND r.v.′s by Lemma 2.1. From
Lemma 2.2, we get that for any ε > 0 and 0 < p < 2,

Cn =

∞∑
n=1

nαp−2h(n)P (|
n∑

i=1

(Yi − EYi)| ≥ εnα)

≤ C

∞∑
n=1

nα(p−2)−2h(n)

n∑

i=1

E|Yi|2

≤ C

∞∑
n=1

nα(p−2)−2h(n)

n∑

i=1

[E|Xni|2I(|Xni| ≤ nα) + n2αP (|Xni| > nα)]

≤ C

∞∑
n=1

nα(p−2)−1h(n)[E|X|2I(|X| ≤ nα) + n2αP (|X| > nα)]

≤ C

∞∑
n=1

nα(p−2)−1h(n)[

n∑

k=1

k2αP (kα ≤ |X| < (k + 1)α)

+n2α
∞∑

k=1

P (kα ≤ |X| < (k + 1)α)]

≤ C

∞∑

k=1

k2αP (kα ≤ |X| < (k + 1)α)

∞∑

n=k

nα(p−2)−1h(n)

+

∞∑

k=1

P (kα ≤ |X| < (k + 1)α)

k∑
n=1

nαp−1h(n)

≤ C

∞∑

k=1

kαph(k)P (kα ≤ |X| < (k + 1)α)

≤ CE|X|ph(|X|1/α) < ∞,

so, we have

Cn =

∞∑
n=1

nαp−2h(n)P (|
n∑

i=1

(Yi − EYi)| ≥ εnα) < ∞ for all ε > 0

The proof is complete. ¤

Taking Xni = Xi for 1 ≤ i ≤ n and h(x) = log−2n in Theorem 3.1, we can
immediately obtain the following corollary.

Corollary 3.1. Let α > 1/2, 0 ≤ p ≤ 2, αp ≥ 1 and let {Xi|i ≥ 1} be an
identically distributed ND r.v.′s with EX1 = 0 for some α ≤ 1. If E|X1|p < ∞,
then we have

∞∑
n=1

nαp−2log−2nP (

n∑

i=1

|Xi| ≥ εnα) < ∞ for all ε > 0.
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Remark 3.1. The condition of identical distribution can be weakened slightly
to be uniformly bounded in probability. When {Xi|i ≥ 1} is a sequence of i.i.d
r.v′s, if we take p = 1/α for some 0 < p < 1 and log−2n = 1, then Corollary 3.1
becomes the result of Bai and Su(1985).

Theorem 3.2. Let {Xni|1 ≤ i ≤ n, n ≥ 1} be an array of rowwise pairwise ND
r.v.′s with EXni = 0 and let E|X|2/α < ∞ for some 0 < α ≤ 1, |ani| ≤ n−α−δ

for some 0 < δ < α/2. If

{Xn} < X,

then we have
∞∑

n=1

P (|
n∑

i=1

aniXni| > ε) < ∞ for all ε < 0.

Proof. Let Ti = n−δI(aniXni > n−δ)+aniXniI(|aniXni| ≤ n−δ)−n−δI(aniXni <
−n−δ). Then for any ε > 0,

∞∑
n=1

P (|
n∑

i=1

aniXni| > ε)

≤
∞∑

n=1

P (

n⋃

i=1

|aniXni| > n−δ) +

∞∑
n=1

P (|
n∑

i=1

aniXni| > ε)

≤
∞∑

n=1

P (
n⋃

i=1

|aniXni| > n−δ)

+

∞∑
n=1

P (|
n∑

i=1

(Ti − ETi)| > ε/2)

= Dn + En (say)

It is omitted, since we can easily get that Dn < ∞.
Next, to prove En < ∞, we first need to show that

|
n∑

i=1

ETi| → 0, n → ∞.

|
n∑

i=1

ETi| ≤
n∑

i=1

E|aniXni|I(|aniXni| ≤ n−δ) + n1−δP (|aniX| > n−δ)

= I3(n) + I4(n) (say) .

As to I3(n), according to EXni = 0, we obtain

I3(n) =

n∑

i=1

E|aniXni|I(|aniXni| ≤ n−δ)

≤ C

n∑

i=1

E|aniX|I(|X| > nα)
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≤ C

n∑

i=1

n(2δ/α)−δE|aniX|2/α

≤ Cn−1−δ → 0, n → ∞,

since |aniX| = |aniX|2/α|aniX|1−2/α, |aniX|1−2/α = |ani|1−2/α|X|1−2/α ≤ n(2δ/α)−δ.
As to I4(n),

I4(n) = n1−δP (|aniX| > n−δ)

≤ n1−δP (|X| > nα)

≤ n1−δ
∞∑

k=n

P (kα ≤ |X| < (k + 1)α)

≤ C

∞∑

k=n

kP (kα ≤ |X| < (k + 1)α) → 0,

so for n large enough we have

|
n∑

i=1

ETi| → 0, n → ∞. (5)

Thus it suffices to show that for any ε > 0,

En
∗ =

∞∑
n=1

P (|
n∑

i=1

(Ti − ETi)| > ε/2) < ∞.

Note that {(Ti − ETi)|1 ≤ i ≤ n, n ≥ 1} is still a sequence of ND r.v.′s by
Lemma 2.1. From Lemma 2.2, we get that for any ε > 0,

En
∗ =

∞∑
n=1

P (|
n∑

i=1

(Ti − ETi)| > ε/2)

≤ C

∞∑
n=1

n∑

i=1

E|Ti|2

≤ C

∞∑
n=1

n∑

i=1

[E|aniXni|2I(|aniXni| ≤ n−δ

+n−2δP (|aniXni| > n−δ)]

≤ C

∞∑
n=1

n∑

i=1

[E|aniX|2I(|aniX| ≤ n−δ

+n−2δP (|aniX| > n−δ)]

≤ C

∞∑
n=1

n−1−2δE|X|2/α

≤ C

∞∑
n=1

n−1−2δ < ∞, (6)
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since |aniX|2 = |aniX|2/α|aniX|2−2/α = |ani|2/α.|X|2/α|aniX|2−2/α, |ani|2/α.
|aniX|2−2/α ≤ n(−α−δ)2/αn(−α−δ)(2−2/α)nα(2−2/α) = n(−2−2δ)

Hence, by (5) and (6), the proof is complete. ¤
As to strong convergence, by weakening the degree of condition in Theorem

3.2 to its half, we can get the following result for ND r.v.′s.

Theorem 3.3. Let {Xni|1 ≤ i ≤ n, n ≥ 1} be an array of rowwise pairwise ND
r.v.′s with EXni = 0 and let E|X|2/α < ∞ for some 0 < α ≤ 1, |ani| ≤ n−α/2−δ

for some 0 < δ < α/2. If

{Xn} < X,

then we have
n∑

i=1

aniXni → 0 a.s. as n → ∞.

Proof. Let Si = ΓnI(Xni > Γn) +XniI(|Xni| ≤ Γn)−ΓnI(Xni < −Γn), where
Γn = n−δ/2/ani. Then

n∑

i=1

aniXni

=

n∑

i=1

ani(Xni − Si) +

n∑

i=1

ani(Si − ESi) + E

n∑

i=1

aniSi

= Fn +Gn +Hn (say)

For any ε > 0,

P (

∞∑

i=1

ani(Xni − Si) > ε/3)

≤ P (

∞⋃

i=1

Xni 6= Si)

≤
∞∑

i=1

P (|aniXni| > n−δ/2)

≤ C

∞∑

i=1

P (|aniX| > n−δ/2)

≤ C

∞∑

i=1

n−1−δ/αE|X|2/α

≤ C

∞∑

i=1

n−1−δ/α < ∞,

by Borel-Cantelli Lemma, we conclude that

Fn → 0 a.s as n → ∞. (7)
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Note that {ani(Si − ESi)|1 ≤ i ≤ n, n ≥ 1} is still a sequence of ND r.v.′s by
Lemma 2.1. Using Lemma 2.2, we get that for any ε > 0,

P (

n∑

i=1

ani(Si − ESi) > ε/3)

≤ C

n∑

i=1

E|aniSi|2

≤ C

n∑

i=1

[E|aniXni|2I(|aniXni| ≤ n−δ/2) + n−δP (|aniXni| > n−δ/2)]

≤ C

n∑

i=1

[E|aniX|2I(|aniX| ≤ n−δ/2) + n−δP (|aniX| > n−δ/2)]

≤ C

n∑

i=1

n−1−δ−δ/αE|X|2/α

≤ Cn−δ−δ/α → 0 as n → ∞,

since |aniX|2 = |aniX|2/α|aniX|2−2/α = |ani|2/α|X|2/α|aniX|2−2/α, |ani|2/α.
|aniX|2−2/α ≤ n−1−δ−δ/α.
Hence, we obtain that

Gn → 0 a.s as n → ∞. (8)

Finally, by EXni = 0, we obtain

Hn =

n∑

i=1

E|aniSi|

≤
n∑

i=1

E|aniXni|I(|aniXni| ≤ n−δ/2) +

n∑

i=1

n−δ/2P (|aniXni| > n−δ/2)

≤
n∑

i=1

E|aniX|I(|aniX| > n−δ/2) +

n∑

i=1

n−δ/2P (|aniX| > n−δ/2)

≤ Cn−δ/2−δ/αE|X|2/α
≤ Cn−δ/2−δ/α → 0 as n → ∞, (9)

since |aniX| = |aniX|2/α|aniX|1−2/α, |ani|2/α|aniX|1−2/α ≤ n−1−δ/2−δ/α.
Hence, by (7), (8) and (9), the proof is complete. ¤

4. Complete convergence of linear processes

In this section, we present one result about the complete convergence of lin-
ear processes which follows from Theorem 3.1. We gave a general version of
Zhang[22] from the identically distributed φ-mixing assumptions case to the
ND r.v.′s.
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Let {Xi, i ∈ Z}, where Z+ = {1, 2, 3, · · · } denote a sequence of random variables
and {ai|i ∈ Z+} a sequence of real numbers with

∑∞
j=−∞ |aj | < ∞. Define a

linear process of the form

Yi =

∞∑

i=−∞
ai+kXi, k ∈ Z+, where Z+ = {1, 2, 3, . . .}. (10)

Theorem 4.1. Assume that {Xi| − ∞ < i < ∞} is a sequence of rowwise
pairwise ND r.v.′s with EXi = 0. Let h(x) > 0 be a slowly varying function
as x → ∞ and r ≥ 1, 1 ≤ t < 2, h(x) is nondecreasing function for r = 1 and
{Yi|i ≥ 1} be satisfied as in (10) of this section . If

{Xn} < X and E|X|rth(|X|t) < ∞,

then we have
∞∑

n=1

nr−2h(n)P (|
n∑

i=1

Yi| ≥ εn1/t) < ∞ for all ε > 0.

Proof. Let Xni = Xi and Yi = n1/tI(aniXi > n1/t) + aniXiI(|aniXi| ≤ n1/t)−
n1/taniI(aniXi < −n1/t) and note that

(1/n1/t)

n∑

i=1

Yi =

∞∑

i=−∞
aniXni =

∞∑

i=−∞
aniXi

By taking Lemma 2.3, Remark 2.1, and p = rt, t = 1/α and αp = r in Theorem
3.1, similarly to proof of Theorem 3.1, we can obtain the result of Theorem 4.1.
The proof is complete. ¤
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