Acknowledgement
Supported by : The National Natural Science Foundation of China
References
- J. A. D. Appleby, G. Berkolaiko and A. Rodkina, Non-exponential stability and decay rates in non-linear stochastic difference equation with unbounded noises, Stochastics. 81(2009), 99-127.
- K. Burrage, P. Burrage and T. Mitsui, Numerical solutions of stochastic differential equations-implementation and stability issues, J. Comput. Appl. Math. 125(2000), 171- 182. https://doi.org/10.1016/S0377-0427(00)00467-2
- G. D. Chalmers and D. J. Higham, Asymptotic stability of a jump-diffusion equation and its numerical approximation, SIAM J. Sci. Comput. 31(2008), 1141-1155.
- W. R. Cao and M. Z. Liu, T-stability of the Euler-maruyama numerical method for the stochastic differential delay equations, Journal of Harbin Institute of Technology. 3(2005), 303-306.(In Chinese)
- D. J. Higham, Mean-square and asymptotical stability of the stochastic theta method, SIAM J. Numer. Anal. 38(2000), 753-769. https://doi.org/10.1137/S003614299834736X
- D. J. Higham and P. E. Kloeden, Convergence and stability of implicit methods for jump- diffusion systems, Int. J. Numer. Anal. Mod. 3(2006), 125-140.
- D. J. Higham, X. R. Mao and A. M. Stuart, Exponential mean-square stability of numer- ical solutions to stochastic differential equations, London Mathematical Society J. Com- put. Math. 6(2003), 297-313.
- D. Lamberton and B. Lapeyre, Introduction to Stochastic Calculus Applied to Finance, Chapman and Hall, London, 1996.
- M. Z. Liu, W. R. Cao and Z. C. Fan, Convergence and stability of the semi-implicit Eu- ler method for a linear stochastic differential delay equation, J. Comput. Appl. Math. 170(2004), 255-268. https://doi.org/10.1016/j.cam.2004.01.040
- R. H. Li, H. B. Meng and Y. H. Dai, Convergence of numerical solutions to stochastic delay differential equations with jumps, Appl. Math. Comput. 172(2006), 584-602. https://doi.org/10.1016/j.amc.2005.02.017
- Y. Maghsoodi, Mean square efficient numerical solution of jump-diffusion stochastic differential equations, Indian J. Statis. 58(1996), 25-47.
- G. N. Milstein, Numerical integration of stochastic differential equations, Kulwer Acadenic, London, 1998.
- A. Rathinasamy and K. Balachandran, Mean-square stability of Milstein method for linear hybrid stochastic delay integro-differential equations, Nonlinear Anal. Hybrid Syst. 2(2008), 1256-1263. https://doi.org/10.1016/j.nahs.2008.09.015
- Y. Saito and T. Mitsui, T-stability of numerical schemes for stochastic differential equa- tions, World Sci. Ser. Appl. Anal. 2(1993), 333-344.
- L. S. Wang, C. L. Mei and H. Xue, The semi-implicit Euler method for the stochastic differential delay equations with jumps, Appl. Math. Comput. 192(2007), 567-578. https://doi.org/10.1016/j.amc.2007.03.027
- Z. Y. Wang and C. J. Zhang, An analysis of stability of Milstein method for stochastic differential equations with delay, J. Comput. Math. Appl. 51,(2006), 1445-1452. https://doi.org/10.1016/j.camwa.2006.01.004
- H. M. Zhang, S. Q. Gan and L. Hu, The split-step backward Euler method for linear stochastic delay differential equations, J. Comput. Appl. Math. 225(2009), 558-568. https://doi.org/10.1016/j.cam.2008.08.032