DOI QR코드

DOI QR Code

STABILITY OF THE MILSTEIN METHOD FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH JUMPS

  • Hu, Lin (Department of Mathematical Sciences and Computing Technology, Central South University) ;
  • Gan, Siqing (Department of Mathematical Sciences and Computing Technology, Central South University)
  • Received : 2010.07.19
  • Accepted : 2010.12.04
  • Published : 2011.09.30

Abstract

In this paper the Milstein method is proposed to approximate the solution of a linear stochastic differential equation with Poisson-driven jumps. The strong Milstein method and the weak Milstein method are shown to capture the mean square stability of the system. Furthermore using some technique, our result shows that these two kinds of Milstein methods can well reproduce the stochastically asymptotical stability of the system for all sufficiently small time-steps. Some numerical experiments are given to demonstrate the conclusions.

Keywords

Acknowledgement

Supported by : The National Natural Science Foundation of China

References

  1. J. A. D. Appleby, G. Berkolaiko and A. Rodkina, Non-exponential stability and decay rates in non-linear stochastic difference equation with unbounded noises, Stochastics. 81(2009), 99-127.
  2. K. Burrage, P. Burrage and T. Mitsui, Numerical solutions of stochastic differential equations-implementation and stability issues, J. Comput. Appl. Math. 125(2000), 171- 182. https://doi.org/10.1016/S0377-0427(00)00467-2
  3. G. D. Chalmers and D. J. Higham, Asymptotic stability of a jump-diffusion equation and its numerical approximation, SIAM J. Sci. Comput. 31(2008), 1141-1155.
  4. W. R. Cao and M. Z. Liu, T-stability of the Euler-maruyama numerical method for the stochastic differential delay equations, Journal of Harbin Institute of Technology. 3(2005), 303-306.(In Chinese)
  5. D. J. Higham, Mean-square and asymptotical stability of the stochastic theta method, SIAM J. Numer. Anal. 38(2000), 753-769. https://doi.org/10.1137/S003614299834736X
  6. D. J. Higham and P. E. Kloeden, Convergence and stability of implicit methods for jump- diffusion systems, Int. J. Numer. Anal. Mod. 3(2006), 125-140.
  7. D. J. Higham, X. R. Mao and A. M. Stuart, Exponential mean-square stability of numer- ical solutions to stochastic differential equations, London Mathematical Society J. Com- put. Math. 6(2003), 297-313.
  8. D. Lamberton and B. Lapeyre, Introduction to Stochastic Calculus Applied to Finance, Chapman and Hall, London, 1996.
  9. M. Z. Liu, W. R. Cao and Z. C. Fan, Convergence and stability of the semi-implicit Eu- ler method for a linear stochastic differential delay equation, J. Comput. Appl. Math. 170(2004), 255-268. https://doi.org/10.1016/j.cam.2004.01.040
  10. R. H. Li, H. B. Meng and Y. H. Dai, Convergence of numerical solutions to stochastic delay differential equations with jumps, Appl. Math. Comput. 172(2006), 584-602. https://doi.org/10.1016/j.amc.2005.02.017
  11. Y. Maghsoodi, Mean square efficient numerical solution of jump-diffusion stochastic differential equations, Indian J. Statis. 58(1996), 25-47.
  12. G. N. Milstein, Numerical integration of stochastic differential equations, Kulwer Acadenic, London, 1998.
  13. A. Rathinasamy and K. Balachandran, Mean-square stability of Milstein method for linear hybrid stochastic delay integro-differential equations, Nonlinear Anal. Hybrid Syst. 2(2008), 1256-1263. https://doi.org/10.1016/j.nahs.2008.09.015
  14. Y. Saito and T. Mitsui, T-stability of numerical schemes for stochastic differential equa- tions, World Sci. Ser. Appl. Anal. 2(1993), 333-344.
  15. L. S. Wang, C. L. Mei and H. Xue, The semi-implicit Euler method for the stochastic differential delay equations with jumps, Appl. Math. Comput. 192(2007), 567-578. https://doi.org/10.1016/j.amc.2007.03.027
  16. Z. Y. Wang and C. J. Zhang, An analysis of stability of Milstein method for stochastic differential equations with delay, J. Comput. Math. Appl. 51,(2006), 1445-1452. https://doi.org/10.1016/j.camwa.2006.01.004
  17. H. M. Zhang, S. Q. Gan and L. Hu, The split-step backward Euler method for linear stochastic delay differential equations, J. Comput. Appl. Math. 225(2009), 558-568. https://doi.org/10.1016/j.cam.2008.08.032