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NUMERICAL STUDY FOR THE PARAMETER ESTIMATION

OF THE MOISTURE TRANSFER COEFFICIENT : 2D CASE

YONG HUN LEE∗ AND YEON HEE PARK

Abstract. The thermal behavior of wood exposed to the outdoors is influ-
enced by solar absorptivity and longwave emissivity. However, it is difficult
to measure that properties directly. Hence we estimate the values of the
parameter by using the least-square optimization technique. Finally we
report the results for the computation of the values of the parameters.
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1. Introduction

The governing equations to represent the moisture and thermal behavior of
wood are known by coupled heat and mass equations defined as

a1
∂m

∂t
= ∇ · (k11∇m+ k12∇T ) (1.1)

a2
∂T

∂t
= ∇ · (k21∇m+ k22∇T ), (1.2)

where m and T represent the moisture contents and thermal temperature, re-
spectively. Also, the distribution of the moisture contents and temperatures are
determined by boundary conditions. Recently, there are few results [5, 6, 7]
for various type of the boundary conditions. For examples, for the case of kiln
drying, the effect of the drying at the external surface depends only on the dry
and web bulb temperature of the kiln.

k11∇m+ k12∇T = hc(ρ∞,v − ρv)

k21∇m+ k22∇T = hT (T − Tdry) + hc∆hv(ρv − ρ∞,v),

where hc and hT are external convective mass and heat transfer coefficients,
respectively, ρv and ρ∞,v are water vapor density at the wood surface and of
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surrounding air, respectively and T and Tdry are the temperature at the wood
surface and of dry bulb, respectively, and ∆hv is the latent heat of evaporation.
In the kiln drying, the Tdry and ρ∞,v is settled by the temperature of bulb and
relative humidity of the kiln.

For the case of indoors, the effect of the drying at the external surface depends
on the relative humidity and temperature of the air.

k11∇m+ k12∇T = hc(ρ∞,v − ρv)

k21∇m+ k22∇T = hT (T − T∞) + hc∆hv(ρv − ρ∞,v),

where T∞ are the temperature of surrounding air. In this case, the T∞ and ρ∞,v

are fluctuated and calculated by the temperature and the relative humidity of
the air.

For the case of outdoors, the process of the drying at the external surface is
influenced on the solar radiation as well as air temperature and relative humidity
of air. Material properties include solar absorptivity and longwave emissivity.
Hence the boundary conditions are represented as

k11∇m+ k12∇T = hc(ρ∞,v − ρv)

k21∇m+ k22∇T = hT (T − T∞) + hc∆hv(ρv − ρ∞,v)− qr,net,

where qr,net is the net solar radiance. The net solar radiance can be expressed
by using the solar absorptivity and emissivity which are the material properties
of the wood.

Knowledge of the thermal behavior of wood exposed to the outdoors is im-
portant for assessing the durability and expected performance of any exterior
wooden component. Furthermore, thermal behavior also affects moisture trans-
fer, and, hence, plays an important role in determining the moisture gradient
in wood. The thermal performance of exterior wood depends on the outdoor
environment, as well as on intrinsic material properties. Material properties
include solar absorptivity and longwave emissivity. However, there are few stud-
ies available on the solar absorptivity and longwave emissivity of wood species
because direct measurement on the broadband frequency range is difficult, espe-
cially in case of emissivity. Hence, in this paper, we investigate the estimation
of the value of solar absorptivity and emissivity by the least-square approxi-
mation which compares the numerical solution and experimental data of the
moisture contents and the temperature of wood species. Therefore, this study
is conducted to estimate solar absorptivity and longwave emissivity indirectly
using the inverse method after measuring the surface temperature of some wood
species horizontally exposed to an outdoor environment.

In section 2, we introduce the governing equations for the process of heat and
mass transfer, the numerical method for solving this differential equations, con-
trol volume finite element method and the methods of the parameter estimation
is introduced in section 3. Finally, we report the computational results.
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2. Formulation of the Heat and Mass Transfer Equation

We consider the coupled heat and mass transfer equations with two state
variables of moisture content m and temperature T which can be represented as
follows:

ρow
∂m

∂t
= ∇ · (k11∇m) +∇ · (k12∇T ) (2.3)

ρCp
∂T

∂t
= ∇ · (k21∇m) +∇ · (k22∇T ) (2.4)

where ρ and ρow are the density of the raw and oven-dried wood, respectively, and
Cp is the specific heat of wood. The coefficients kij are functions of moisture
contents m and temperature T . Here the density and the specific heat are
represented as [4],

ρ =
ρow(1 +m)

1 +mρow/1000

Cp =
103.1 + 3.867T + 4190m

1 +m
+m(−6191 + 23.6T − 1330m).

In this paper, we consider the outdoor weather condition to the air tempera-
ture, relative humidity and solar radiation, regardless the rain drop and the wind
speed. Hence the boundary equations at exposed surfaces are given as following:

−k11∇m− k12∇T = hc(ρ∞,v − ρv) (2.5)

−k21∇m− k22∇T = hT (Ts − T∞) + hc∆hv(ρv − ρ∞,v)− qr,net, (2.6)

where hc and hT are external convective mass and heat transfer coefficients,
respectively, and ρv and ρ∞,v are water vapor density at the wood surface and
of surrounding air, respectively and Ts and T∞ are the temperature at the wood
surface and of surrounding air, respectively, and ∆hv is the latent heat of evap-
oration and qr,net is the net solar radiance.

The net solar radiance qr,net can be expressed by the following equation [3],

qr,net = αG− εσ(T 4
s − T 4

sky), (2.7)

where α and ε are the solar absorptivity and emissivity, respectively and G is
incident solar radiance and Ts and Tsky is the temperature at the wood surface
and of sky, respectively. Tsky is the equivalent blackbody sky temperature, de-
fined to be the equivalent temperature of the clouds, water vapor, and other
atmospheric elements that make up the sky to which a surface can radiate heat.
Sky temperature is an important parameter for calculating radiative heat trans-
fer between an object at a given temperature above absolute zero (0◦K) and the
sky.

The fictive sky temperature depends on the exterior air temperature, humid-
ity, and cloudiness. For a partially overcast sky it may be estimated by the
equation by Cole [2].

Tsky = Ta[ε0 + 0.84c(1− ε0)]
0.25 (2.8)
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where Ta is the exterior air temperature, ε0 is the emissivity of the clear sky and
c is the fractional cloud cover.

Berdahl and Martin [1] proposed an equation for the emissivity of a clear sky
depending on the dew point and time in relation to midnight.

ε0 = 0.711 + 0.0056Tdp + 0.000073T 2
dp + 0.013 cos(2π

n

24
) (2.9)

where Tdp is the ambient dew point and n is the time until or since midnight
in hours (0 ≤ n ≤ 24). For dew points between -20◦C and 30◦C, this equa-
tion is valid only for clear sky conditions. The difference between air and sky
temperature is from 5◦K in a hot and moist climate to 30◦K in a cold and dry
climate.

pvs = exp

(
23.5771− 4042.9

Ta − 37.58

)
(2.10)

pv = pvs × ϕ (2.11)

Tdp = 37.58− 4042.9

log pv − 23.5771
(2.12)

where pvs is the saturated water vapor pressure, pv is the water vapor pressure
and ϕ is the relative humidity.

By replacing the expression of the density of water vapor into moisture con-
tent, the boundary equations (2.5)-(2.6) may be rewritten as:

−k11∇m− k12∇T = hm(m∞ −m) (2.13)

−k21∇m− k22∇T = hT (T∞ − T ) + hm∆hv(m∞ −m)− qr,net (2.14)

where hm and hT are the external convective mass and heat transfer coefficients,
respectively, and satisfies the following relation:

hm = hc
Mvpvs,∞

RT

∂h

∂m
. (2.15)

The two convective transfer coefficients are dependent each other if the Prandtl
and Schmidit numbers, or the thermal and water vapor diffusivities are equal.
If the Nusselt and Sherwood numbers would be equal and the Lewis number
equals to unity, leading to the Lewis relation:

hc
∼= hT

ρaCpa
. (2.16)

Therefore, a convective mass transfer coefficient can be evaluated from convective
heat transfer coefficients that are more established from the literature data.

To predict the radiation on a vertical or column surface, it should be known
to be the direct, diffuse and reflected radiation. However, measurement data
usually give the total radiation only on the horizontal surface.

According to Reindl et al. [8, 9], The horizontal diffuse radiation depends on
the ambient temperature and the relative humidity as well as the sky clearness,
which can be estimated from the total radiation on the horizontal surface.



Numerical study for the parameter estimation 1261

3. Parameter Estimation

In this section, we introduce the numerical method to estimate the value of
the parameters using the least square methods and the control volume finite
element methods. In order to determine the values of the parameters P =
[p1, p2, . . . , pn] of diffusion equations and boundary conditions, we define the
objective functional to be minimized as follows:

F (P ) =

m∑

j=1

|T (tj)− Te(tj)|2 , (3.17)

where T (tj) and Te(tj) is the computational temperature and experimental tem-
perature at the certain point after tj seconds, respectively.

In this paper, three columns of species were used in this experiment, which
were air-dried in the indoor environment for more than a half-year and to about
12% moisture content. The wood columns with dimension of 2.4m×0.2m×0.2m
were cut into three in length of 0.7m. The average density of wood columns was
437kg/m3, ranged from 424kg/m3 to 455kg/m3.

The top and bottom of wood columns were insulated by aluminum foil and
Styrofoam. For measuring thermal and moisture content changes, the columns
were exposed to outdoor weather conditions for one day, 15 May 2008. The
column was placed in four cardinal directions. The field test was conducted at
Chonnam National University, located at Gwangju in Korea. K type of thermo-
couples was used for measuring the temperatures of surface which has a full south
aspect and midpoint. Temperatures were set to be data-logged automatically
at one minute interval. The profile of the temperature of 3 columns of species
during a one day are depicted in Figure 1. Figure shows that there contains
some experimental error.

The necessary condition to minimize the function at P ∗ is

∇F (P ∗) = 0.

Then the gradient of F (P ) is

∇F (P ) =

m∑

j=1

rj(P )∇rj(P ) = J(P )T r(P ),

where r(P ) = (r1, r2, · · · , rm)T , and

rj(P ) = |T (tj)− Te(tj)|, j = 1, · · · ,m,
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Figure 1. The profiles of the temperature at surface
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and the Jacobian matrix J(P ) of r(P ) is

J(P ) =




∂r1
∂p1

∂r1
∂p2

· · · ∂r1
∂pn

∂r2
∂p1

∂r2
∂p2

· · · ∂r2
∂pn

...
...

. . .
...

∂rm
∂p1

∂rm
∂p2

· · · ∂rm
∂pn




,

where the partial derivatives
∂rj
∂pi

is approximated by discrete formula as follow-
ing:

∂rj
∂pi

=
rj(P + hei)− rj(P − hei)

2h
, (3.18)

where ei is unit vector which only has 1 at i-th component and h > 0 is small
quantity. However, this system of equations is nonlinear and difficult to compute.
Hence the Newton’s method is used to solve this system. The original Newton’s
iterative formula has the form.

P (k+1) = P (k) −
[
J(P (k))TJ(P (k)) + S(P (k))

]−1

J(P (k))T r(P (k)),

where Hessian S(P ) has the second-order derivative such as

S(P ) =

m∑

j=1

rj(P )∇2rj(P ).

However, second-order derivative term is expensive to compute and make the
system ill-conditioned. Hence, by neglecting this second-order term in Newton’s
method, the simplified iteration is the following Gauss-Newton iteration

P (k+1) = P (k) −
[
J(P (k))TJ(P (k))

]−1

J(P (k))T r(P (k)). (3.19)

These parameters were adjusted by the fitting procedure until the best agreement
between experimental and simulation was obtained.

In order to find the computational temperature we use discretization method
so called the control volume finite element method(CVFEM). Now, we introduce
CVFEM which is used to discretize our diffusion equations. We recast coupled
heat and mass transfer equations to typical formulation as following:

∂

∂t
Ψ+∇ · J = 0, (3.20)

where Ψ represents the quantities with state variables ρowm or ρCpT and the
fluxes J represents

Jw = k11∇m+ k12∇T,

Je = k21∇m+ k22∇T,
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respectively. Applying time discretization technique such as the backward Euler
to (3.20), we have the following stationary equation at each time step

(Ψ−Ψ(prev))/δt+∇ · J = 0, (3.21)

where Ψ(prev) means the value of the quantity Ψ at the previous time step. δt
means the time step size. As shown as Figure 2, the computational domain is
meshed with triangular elements, and at each node the control volumes(CVs)
are constructed. One sees the technique adopted in this paper for constructing
the CVs around the element vertices.

Figure 2. Construction of a two-dimensional control volume
(shaded region) consisting of sub-control volumes.

To obtain the discretized formulation of the stationary equation (3.21), we
have integrating over the each CV

Area(CV)

δt
(Ψpt −Ψ

(prev)
pt ) +

∫

CV

∇ · J dS = 0,

where Ψpt, the value of Ψ at the node point pt, is representative value of Ψ in
the CV, i.e.,

Ψpt =
1

Area(CV)

∫

CV

Ψ dS,

and applying the Gauss divergence theorem:

αΨpt −
∑

f∈FCV

(J · n)f = αΨ
(prev)
pt ,

where α = Area(CV)
δt , FCV is the set of faces enclosing the CV and nf is outward

normal vector with size of the length of face. Also the term (J ·n)f is evaluated
accurately at the midpoint of the face.
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In order to evaluate to approximated flux at the face of the CV, we use finite
element shape functions for the diffusion terms. Then we have the 3N discrete
analogue of the equations (3.21) as following:

Fpt(x) :=

α(Ψ
(n+1)
pt −Ψ

(n)
pt )−

∑

f∈CV

((α1J
(n+1)
pt + α2J

(n+1)
nb1 + α3J

(n+1)
nb2 ) · n)f = 0,

where the superscript (n+1) means the current time level t(n+1), (n) the previous
time level t(n), and time step size is δt = t(n+1) − t(n).

Now, we introduce the iterative algorithm to estimate the parameters. At

first step, we choose the initial guess P (0) = [p
(0)
1 , p

(0)
2 , · · · , p(0)n ]. Then we can

calculate the numerical solution of the heat and mass equations for the values
of the parameters P (0) by using control volume finite element methods and
also obtain the value of the objective functional (3.17). Since the value of the
objective functional may be not the minimum value, for the next step, we can
find the values of the next step P (1) from the iterative equation (3.19). For the
purpose of it, we must find the Jacobian matrix J(P (0)), i.e., we have to compute

the approximated value (3.18) of the partial derivative
∂rj
∂pi

. Hence for the values

of the parameters P (0) ± hei = [p
(0)
1 , · · · , p(0)i ± h, · · · , p(0)n ], (i = 1, 2, · · ·n), we

obtain the values of the objective functional. Until the minimum value of the
functional is obtained, we repeat the iterative process. Then we can get the
values of the parameters which the functional is minimized.

4. Numerical Results

In this section, we report numerical simulation results. In order to discetize
for the control volume finite element method, the rectangular samples of wood
were meshed with a triangular elements. The density of wood were assumed to
be 400kg/m3. Convective heat and mass transfer coefficients were assumed to
be hT = 10W/m2K and hm = 0.0025m/s. The convective coefficients are given
to be as following.

k11 = 7× 10−2e1000(m−4)/RT

k22 = 7× 10−1e100(m−12)/RT .

In this calculation, the k12 and k21 are neglected. For numerical differential, we
may assume h = 10−7. For the parameter estimation, we use two parameters,
i.e., the solar absorptivity α and the longwave emissivity ε are setting to the
parameter p1 and p2. For the Gauss-Newton iteration, the initial guess for
the values of α and ε, we take α = 0.8 and ε = 0.5 for the three samples,
respectively. The results of Gauss-Newton iteration are shows in Table 1. After
6 ∼ 8 iteration, we obtain the minimal value of the objective functional F (P ).
The profile of the temperature at the initial guess (α = 0.8 and ε = 0.5) and the
final profile of the temperature of the minimal value which are compared with
the experimental data are depicted for the three samples in Figure 3.
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Figure 3. The profiles of the temperature at surface
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n α ε F (P )
0 0.800000 0.500000 34410.111298
1 1.104833 0.753371 8173.279037
2 0.990811 0.679504 6351.316789
3 0.939754 0.643632 6298.086673
4 0.937863 0.642271 6297.058186
5 0.940100 0.643799 6297.020707
6 0.939344 0.643261 6297.014585

(a) Sample 1
n α ε F (P )
0 0.800000 0.500000 43005.564803
1 1.115566 0.759372 13928.831652
2 1.009180 0.690918 7024.626625
3 0.955323 0.651281 6767.634999
4 0.955865 0.650892 6760.633622
5 0.956326 0.650953 6760.357789
6 0.956087 0.650714 6760.347828
7 0.956309 0.650838 6760.346692
8 0.956646 0.651075 6760.346286

(b) Sample 2
n α ε F (P )
0 0.800000 0.500000 26522.946286
1 0.974551 0.690664 9791.558504
2 0.892916 0.632368 5507.029406
3 0.864383 0.608929 5327.290125
4 0.874541 0.615191 5320.101069
5 0.876226 0.615997 5319.751237
6 0.876873 0.616340 5319.739136
7 0.876023 0.615715 5319.732121
8 0.876074 0.615751 5319.732107

(c) Sample 3
Table 1. The computational results of Gauss-Newton iteration

5. Concluding Remark

It is important to know the solar absorptivity and the longwave emissivity
of the wood. But it is difficult to measure this material property. Using the
nonlinear least-square method and control volume finite element method for the
heat and mass equation, we estimate the value of the parameters, the solar
absorptivity and the longwave emissivity, by inverse technique.

However, the error analysis and the convergence analysis of the iterative
scheme has not been achieved. For further study, we want to establish the
theoretical theory for the convergence and error analysis.
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