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GROWTH†

YANQIN FANG, JIHUI ZHANG∗

Abstract. In this paper we consider a system of N-Laplacian elliptic equa-
tions with critical exponential growth. The existence and multiplicity re-
sults of solutions are obtained by a limit index method and Trudinger-
Moser inequality.
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1. Introduction and main result

In this paper, we study the existence of multiple solutions for the following
equations with exponential critical growth





∆Nu = f(x, u) +Ru(x, u, v), x in Ω,

−∆Nv = g(x, v) +Rv(x, u, v), x in Ω,

u = v = 0, on ∂Ω,

(1)

where Ω ⊂ RN (N ≥ 2) is a smooth bounded domain and R : Ω̄×R2 → R is a
C1 function.

In the previous decades, there has been a number of activities in the study
of the elliptic equations leading to indefinite functionals. For example, when
N=2, this class of system is called noncooperative and many recent studies have
focused on it. Results relating to these problems can be found in [1, 3, 4, 5, 6,
7, 11, 13, 15, 19] and the references therein.
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In a recent paper, Lin and Li [13] had considered the following system




∆u = |u|2∗−2u+ Fs(x, u, v) in Ω,

−∆v = |v|2∗−2v + Ft(x, u, v) in Ω,

u|∂Ω = 0, v|∂Ω = 0.

(2)

By applying the Limit Index Theory, they obtained the existence of multiple
solutions under some assumptions on nonlinear part.

In [10], Huang and Li applied the Principle of Symmetric Criticality and
the Limit Index Theory to study the system of elliptic equations involving the
p-Laplacian in the unbounded domain in RN





∆pu− |u|p−2u = Fu(|x|, u, v) in RN ,

−∆pv + |v|p−2v = Fv(|x|, u, v) in RN ,

u, v ∈ W 1,p(RN ),

(3)

where 1 < p < N , and they extended some results of [15].
In [8], Fang and Zhang dealt with the existence and multiplicity of solutions

to the following systems




∆pu = |u|p∗−2u+ Fu(x, u, v) in Ω,

−∆qv = |v|q∗−2v + Fv(x, u, v) in Ω,

u|∂Ω = 0, v|∂Ω = 0,

(4)

where Ω ⊂ RN is an open-bounded domain with smooth boundary, F = F (x, u, v),
Fu = ∂F

∂u , Fv = ∂F
∂v , 1 < p, q < N , p∗ = pN/(N−p) and q∗ = qN/(N−q) denote

the critical Sobolev exponent.
We would like to emphasize that in the literature rather less attention has

been paid to noncooperative systems involving exponential critical growth to
the case N ≥ 2. In [1], Alves and Soares considered N-Laplacian and they
proved the existence of nontrivial solution for the corresponding system (1) with
critical Sobolev exponent and critical exponential growth on bounded domain
of RN for N ≥ 2. The proof is based on a linking theorem without the Palais-
Smale condition. And we should also mention the article [9], where a class of
Hamiltonian systems with exponential critical growth has been considered.

Motivated by works just described, a natural question arises whether the ex-
istence of multiple solutions can be obtained when we consider the N-Laplacian
operator and assume that the nonlinearities have a critical exponential growth.
In this paper we deal with the problem (1). The functional Φ is strongly indefi-
nite in the sense that it is neither bounded from above nor from below. We can
not apply the symmetric Mountain Pass Theorem in considering the existence
of infinitely many critical points of the functional Φ. Here, we employ a limit in-
dex and Trudinger-Moser inequality. Then main difficulties are related to verify
the condition of limit index and (PS)∗c . In our paper, we must overcome these
difficulties.
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In order to treat variationally (1) in W 1,N (Ω)×W 1,N (Ω), we use the inequal-
ities of Trudinger and Moser (See [17, 20]), which provide

exp(α|u|N/(N−1)) ∈ L1(Ω), for all u ∈ W 1,N
0 (Ω) and α > 0 (5)

and there exists a constant C(Ω) > 0 such that

sup
‖u‖≤1

∫

Ω

exp(α|u|N/(N−1))dx ≤ C(Ω), for all u ∈ W 1,N
0 (Ω) and α ≤ αN ,

(6)

where αN = Nω
1/(N−1)
N−1 and ωN−1 is the N − 1-dimensional surface of the unit

sphere.
Now, we give the following assumptions.

(F1) There exists a constant C > 0 such that

|f(x, s)| ≤ C exp(αN |s|N/(N−1)), for all x ∈ Ω̄, s ∈ R.

(F2) There exists ν ∈ (0, N) such that

0 ≤ νF (x, s) ≤ f(x, s)s, for all x ∈ Ω, s ∈ R,

where F (x, s) =
∫ s

0
f(x, t)dt.

(G1) There exists a continuous function b verifying

g(x, s) = b(x, s) exp(αN |s|N/(N−1)),

with

cp|s|p−2s ≤ b(x, s) ≤ dp|s|p−2s for all x ∈ Ω̄, s ∈ R,

for some p > N and constants cp, dp > 0.
(G2) There exists µ > N such that

0 ≤ µB(x, s) ≤ b(x, s)s, for all x ∈ Ω, s ∈ R,

where B(x, s) =
∫ s

0
b(x, t)dt.

(G3) The constants cp, ν, µ given by conditions (F2), (G1) and (G2) satisfy

max

{
νN

N − ν
,

µN

µ−N

}(
p−N

pN

)
1

c
N

p−N
p

(
1

r
)

N
p−N < 1,

where r will be given later.
Related to function R, we assume that the following conditions hold.

(R1) Ru(x, 0, 0) = Rv(x, 0, 0) = 0 and R(x, u, v) ≥ 0 for all (x, u, v) ∈ Ω̄×R2.
(R2) For any α, β > 0

lim
|(u,v)|→+∞

Ru(x, u, v)

exp(α|u|N/(N−1)) + exp(β|v|N/(N−1))
= 0

and

lim
|(u,v)|→+∞

Rv(x, u, v)

exp(α|u|N/(N−1)) + exp(β|v|N/(N−1))
= 0.
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(R3) For ν and µ given by condition (F2) and (G2), we assume that

0 ≤ R(x, s, t) ≤ 1

ν
Ru(x, s, t)s+

1

µ
Rv(x, s, t)t, for all x ∈ Ω, (s, t) ∈ R2.

We note that the hypotheses (R1)-(R3) are satisfied by the function given by

R(u, v) = |u|se|u|α |v|te|v|β , where 1 < α, β < 2, s and t are positive real numbers
such that s

ν + t
µ ≥ 1, where ν and µ are given by conditions (F2) and (G2).

By X = E × E we denote the space W 1,N
0 (Ω)×W 1,N

0 (Ω) endowed with the
norm

‖(u, v)‖N = ‖u‖N + ‖v‖N ,

where ‖ · ‖ denotes the usual norm in W 1,N
0 (Ω) and we write Φ : X → R the

functional given by

Φ(u, v) =− 1

N

∫

Ω

|∇u|Ndx+
1

N

∫

Ω

|∇v|Ndx−
∫

Ω

F (x, u)dx

−
∫

Ω

G(x, v)dx−
∫

Ω

R(x, u, v)dx. (7)

Under the assumptions (F1) and (R2), the functional Φ is well defined, belongs
to C1(X,R) and

〈Φ′(u, v), (φ, ψ)〉 =−
∫

Ω

|∇u|N−2∇u∇φdx+

∫

Ω

|∇v|N−2∇v∇ψdx−
∫

Ω

f(x, u)φdx

−
∫

Ω

g(x, v)ψdx−
∫

Ω

Ru(x, u, v)φdx−
∫

Ω

Rv(x, u, v)ψdx

(8)

for all (u, v), (φ, ψ) ∈ X.
Now we give the main result of this paper.

Theorem 1.1. Suppose that the assumptions (F1) − (F2), (G1) − (G3) and
(R1) − (R3) hold. Then the functional Φ possesses k0 − 1 critical values such
that 0 < c−k0+1 ≤ · · · ≤ c−1 ≤ β, where k0 > 1 and β > 0. That is, the system
(1) possesses at least k0 − 1 pairs weak nontrivial solutions.

2. Preliminaries

First of all, we recall the Limit Index Theory due to Li [15]. In order to do
that, we introduce the following definitions.

Definition 2.1 ([15, 22]). The action of a topological group G on a normed
space Z is a continuous map

G× Z → Z : [g, z] 7−→ gz

such that

1 · z = z, (gh)z = g(hz), z 7−→ gz is linear, ∀g, h ∈ G.
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The action is isometric if

‖gz‖ = ‖z‖, ∀g ∈ G, z ∈ Z,

and in this case Z is called G-space.

The set of invariant points is defined by

Fix G := {z ∈ Z; gz = z, ∀g ∈ G}.
A set A ⊂ Z is invariant if gA = A for every g ∈ G. A function ϕ : Z → R is
invariant ϕ ◦ g = ϕ for every g ∈ G, z ∈ Z. A map f : Z −→ Z is equivariant if
g ◦ f = f ◦ g for every g ∈ G.

Suppose Z is a G-Banach space, that is, there is a G isometric action on Z.
Let

Σ = {A ⊂ Z;A is closed and gA = A, ∀g ∈ G}
be a family of all G-invariant closed subset of Z, and let

Γ = {h ∈ C0(Z,Z);h(gu) = g(h(u)), ∀g ∈ G}
be the class of all G-equivariant mapping of Z. Finally, we call the set

O(u) := {gu; g ∈ G}
G-orbit of u.

Definition 2.2 ([18]). An index for (G,Σ,Γ) is a mapping i : Σ −→ Z+

⋃{+∞}
(where Z+ is the set of all nonnegative integers) such that for all A, B ∈ Σ, h ∈ Γ
the following conditions are satisfied: 1

(1) i(A) = 0 ⇐⇒ A = ∅;
(2) (Monotonicity) A ⊂ B =⇒ i(A) ≤ i(B);
(3) (Subadditivity) i(A

⋃
B) ≤ i(A) + i(B);

(4) (Supervariance) i(A) ≤ i(h(A)), ∀h ∈ Γ;
(5) (Continuity) If A is compact and A∩ Fix G=∅, then i(A) < +∞ and there

is a G-invariant neighborhood N of A such that i(N̄) = i(A);
(6) (Normalization) If x 6∈Fix G, then i(O(x)) = 1.

Definition 2.3 ([5]). An index theory is said to satisfy the d-dimension property
if there is a positive integer d such that

i(V dk
⋂

B1(0)) = k

for all dk-dimensional subspaces V dk ∈ Σ such that V dk
⋂

Fix G = {0}, where
B1(0) is the unit sphere in Z.

Suppose U and V are G-invariant closed subspaces of Z such that

Z = U
⊕

V,

where V is infinite dimensional and

V =

∞⋃

j=1

Vj ,
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where Vj is a dnj-dimensional G-invariant subspace of V , j = 1, 2, · · · , and
V1 ⊂ V2 ⊂ · · ·Vn ⊂ · · · . Let

Zj = U
⊕

Vj ,

and ∀A ∈ Σ, let

Aj = A
⋂

Zj .

Definition 2.4 ([15]). Let i be an index theory satisfying the d-dimension prop-
erty. A limit index with respect to (Zj) induced by i is a mapping

i∞ : Σ −→ Z
⋃

{−∞,+∞},
given by

i∞(A) = lim sup
j→∞

(i(Aj)− nj).

Proposition 2.1 ([15]). Let A, B ∈ Σ. Then i∞ satisfies:
(1) A = ∅ =⇒ i∞ = −∞;
(2) (Monotonicity) A ⊂ B =⇒ i∞(A) ≤ i∞(B);
(3) (Subadditivity) i∞(A

⋃
B) ≤ i∞(A) + i∞(B);

(4) If V
⋂

Fix G={0}, then i∞(Bρ(0)
⋂
V ) = 0, where Bρ(0) = {z ∈ Z, ‖z‖ =

ρ};
(5) If Y0 and Ỹ0 are G-invariant closed subspaces of V such that V = Y0

⊕
Ỹ0,

Ỹ0 ⊂ Vj0 for some j0 and dim Ỹ0 = dm, then i∞(Bρ(0)
⋂
Y0) ≥ −m.

Definition 2.5 ([14]). A functional J ∈ C1(Z,R) is said to satisfy the condition
(PS)∗c if any sequence {unk

}, unk
∈ Znk

such that

J(unk
) → c, dJnk

(unk
) → 0, as k → ∞

possesses a convergent subsequence, where Znk
is the nk-dimension subspace of

Z, Jnk
= J |Znk

.

Theorem 2.1 ([15]). Assume that
(B1) J ∈ C1(Z,R) is G-invariant;
(B2) There are G-invariant closed subspaces U and V such that V is infinite

dimensional and Z = U
⊕

V ;
(B3) There is a sequence of G-invariant finite-dimensional subspaces

V1 ⊂ V2 ⊂ · · ·Vj ⊂ · · · ,dimVj = dnj ,

such that V =
⋃∞

j=1Vj ;

(B4) There is an index theory i on Z satisfying the d-dimension property;

(B5) There are G-invariant subspaces Y0, Ỹ0, Y1, of V such that V = Y0

⊕
Ỹ0,

Y1, Ỹ0 ⊂ Vj0 for some j0, and dim Ỹ0 = dm < dk = dimY1;
(B6) There are α and β, α < β such that J satisfies (PS)∗c , ∀c ∈ [α, β];

(B7)





(a) either Fix G ⊂ U ⊕ Y1, or Fix G ∩ V = {0},
(b) there is ρ > 0, such that ∀u ∈ Y0 ∩Bρ(0), J(u) ≥ α,

(c) ∀z ∈ U ⊕ Y1, J(z) ≤ β,

(9)
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if i∞ is the limit index corresponding to i, then the numbers

cj = inf
i∞(A)≥j

sup
z∈A

J(z), −k + 1 ≤ j ≤ −m,

are critical values of J , and α ≤ c−k+1 ≤ · · · ≤ c−m ≤ β. Moreover, if c = cl =
· · · = cl+r, r ≥ 0, then i(ιc) ≥ r + 1 where ιc = {z ∈ Z; dJ(z) = 0, J(z) = c}.

According to [21] (Section 4.9.4) there exists a Schauder basis {en}∞n=1 for

E = W 1,N
0 (Ω). Furthermore, since E is reflexive, {e∗n}∞n=1, the biorthogonal

functionals associated to the basis {en}∞n=1 (which are characterized by the re-
lations 〈e∗m, en〉 = δm,n), form a basis for E∗ with the following properties (cf.
[16] Propositon 1.b.1 and Theorem 1.b.5). Denote

En = span{e1, e2, · · · en}, E⊥
n = span{en+1, · · · }

and

E∗
m = span{e∗1, e∗2, · · · e∗m}.

Let Pn : E → En be the projector corresponding to the decomposition E =
En ⊕ E⊥

n and P ∗
n : E∗ → E∗

n the projector corresponding to the decomposition
E∗ = E∗

n ⊕ (E∗
n)

⊥. Then Pnu → u, P ∗
nv

∗ → v∗ for any u ∈ E, v∗ ∈ E∗ as
n → ∞ and

〈P ∗
nv

∗, u〉 = 〈v∗, Pnu〉.
Let τ : E → E∗ be the mapping given by

〈τu, ũ〉 =
∫

Ω

|∇u|p−2∇u · ∇ũdx.

It is easy to check that the operator τ is bounded, continuous. And if un ⇀ ũ
in E and 〈τun − τ ũ, un − ũ〉 → 0, then un → ũ in E (See [10, 15]).

Now, we set

X = U ⊕ V, U = E × {0}, V = {0} × E, (10)

Y0 = {0} × E⊥
1 , V = Y0 ⊕ Ỹ0, (11)

Y1 = {0} × Ek0 , Ek0 = span{e1, e2, · · · ek0}, (12)

then dim Ỹ0 = 1, dimY1 = k0.
We define a group action G = {1, τ} ∼= Z2 by setting τ(u, v) = (−u,−v), then

Fix G = {0} × {0} (also denote {0}). It is clear that U and V are G-invariant

closed subspaces of X, and Y0, Ỹ0 and Y1 are G-invariant subspace of V .
Set

Σ = {A ⊂ X;A is closed and (u, v) ∈ A ⇒ (−u,−v) ∈ A}. (13)

Define an index γ on Σ by:

γ(A) =





min{N ∈ Z+; ∃h ∈ C(A,RN\{0}) such that h(−u,−v) = h(u, v)},
0, if A = ∅,
+∞, if such h does not exist.

(14)



1236 Yanqin Fang, Jihui Zhang

Then we have the following proposition: γ is an index satisfying the proper-
ties given in Definition 2.2. Moreover, γ satisfies the one-dimension property.
According to Definition 2.4 we can obtain a limit index γ∞ with respect to (Xn)
from γ.

The following Proposition 2.2 and Lemma 2.2 play an important part in our
proofs.

Proposition 2.2. Let (ϕj) be a sequence of functions in W 1,N
0 (Ω) converging to

ϕ weakly in W 1,N
0 (Ω). Assume that ‖ϕj‖N/(N−1) ≤ δ < 1 and l ∈ C(Ω̄× R,R)

satisfies

|l(x, s)| ≤ C exp(αN |s|N/(N−1)), for all (x, s) ∈ (Ω̄×R,R)

and for some C > 0. Then,

lim
j→+∞

∫

Ω

l(x, ϕj)ωdx =

∫

Ω

l(x, ϕ)ωdx, (15)

for every ω ∈ W 1,N
0 (Ω), and

lim
j→+∞

∫

Ω

l(x, ϕj)ϕjdx =

∫

Ω

l(x, ϕ)ϕdx. (16)

Proof. The proof is similar to [1]. Consider q > 1 so that qδ < 1. From the
hypothesis on l,

∫

Ω

|l(x, ϕj)|qdx ≤ C

∫

Ω

eqαN |ϕj |N/(N−1)

dx (17)

= C

∫

Ω

e
qαN‖ϕj‖N/(N−1)(

|ϕj |
‖ϕj‖ )

N/(N−1)

dx (18)

≤ C

∫

Ω

e
qαNδ(

|ϕn|
‖ϕj‖ )

N/(N−1)

dx. (19)

By Trudinger and Moser inequality, there exists M1 > 0 such that
∫

Ω

|l(x, ϕj)|qdx ≤ M1, ∀n ∈ N. (20)

Combing Sobolev embeddings with Egoroff theorem, given ε > 0 there exists
E ⊂ Ω such that |E| < ε and ϕj(x) → ϕ(x) uniformly on Ω\E. By Hölder
inequality and using (20), we get

|
∫

Ω

(l(x, ϕj)− l(x, ϕ))ωdx| ≤
∫

Ω\E
|l(x, ϕj)− l(x, ϕ)||ω|dx+ oε(1)

where oε(1) → 0 as ε → 0. As ε > 0 is arbitrary and l(x, ϕj) → l(x, ϕ) uniformly
on Ω\E, we conclude the proof of (15). Similar argument shows that the limit
(16) hold. ¤
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Lemma 2.2. Suppose that R satisfies the condition (R2) and let (ϕj , φj) be a

sequence weakly convergent to (ϕ, φ) in W 1,N
0 (Ω)×W 1,N

0 (Ω). Then,∫

Ω

R(x, ϕj , φj)dx →
∫

Ω

R(x, ϕ, φ)dx,

∫

Ω

Ru(x, ϕj , φj)ϕjdx →
∫

Ω

Ru(x, ϕ, φ)ϕdx,
∫

Ω

Ru(x, ϕj , φj)ξdx →
∫

Ω

Ru(x, ϕ, φ)ξdx,
∫

Ω

Rv(x, ϕj , φj)φjdx →
∫

Ω

Rv(x, ϕ, φ)φdx,
∫

Ω

Rv(x, ϕj , φj)ψdx →
∫

Ω

Rv(x, ϕ, φ)ψdx,

for all ξ, ψ ∈ W 1,N
0 (Ω).

Proof. Since (ϕj , φj) is weakly convergent, there is M > 0 such that

‖ϕj‖, ‖φj‖ ≤ M for all j ∈ N.

Now from (R2), given 0 < α, β < M−N/(N−1)αN , there exists a constant C > 0
such that

|Ru

(
x, ϕj , φj)| ≤ C(eα|ϕj |N/(N−1)

+ eβ|φj |N/(N−1)
)

(21)

|Rv

(
x, ϕj , φj)| ≤ C(eα|ϕj |N/(N−1)

+ eβ|φj |N/(N−1)
)

(22)

As a consequence,

|R
(
x, ϕj , φj)| ≤ C(eα|ϕj |N/(N−1)

+ eβ|φj |N/(N−1)
)
(|ϕj |+ |φj |). (23)

Taking q > 1 such that qα|M |N/(N−1), qβMN/(N−1) < αN , from Trudinger and
Moser inequality there exists K > 0 such that∫

Ω

eαq|ϕj |N/(N−1)

,

∫

Ω

eβq|φj |N/(N−1) ≤ K ∀n ∈ N.

This combing with (21)-(23) and Sobolev embeddings imply that the above limits
hold. This concludes the proof. ¤
Lemma 2.3. Suppose that the assumptions (F1)−(F2), (G1)−(G2) and (R1)−
(R3) hold. Then
(i) there is α, ρ > 0 such that ∀(0, v) ∈ Y0 ∩Bρ(0), Φ(0, v) ≥ α;
(ii)there is β > 0 such that ∀(u, v) ∈ U ⊕ Y1, Φ(u, v) ≤ β.

Proof. We start observing that, from (G1),

|G(x, t)| ≤ dp|t|peαN |t|N/(N−1)

, for all x ∈ Ω̄ t ∈ R.

Thus if (0, v) ∈ Y0 ∩Bρ(0), by (5),

Φ(0, v) =
1

N
‖v‖N −

∫

Ω

G(x, v)dx
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≥ 1

N
‖v‖N − dp

∫

Ω

|v|peαN |v|N/(N−1)

dx (24)

≥ 1

N
‖v‖N − dp|v|p2p{

∫

Ω

e2αN |v|N/(N−1)

dx} 1
2 (25)

=
1

N
‖v‖N − dp|v|p2p{

∫

Ω

e2αN‖v‖N/(N−1)(
|v|
‖v‖ )

N/(N−1)

dx} 1
2 . (26)

By Trudinger and Moser inequality (6), if ‖v‖N/(N−1) < 1
2 , then

Φ(0, v) ≥ 1

N
‖v‖N − C|v|p2p ≥ 1

N
‖v‖N − C‖v‖p.

Since p > N , there exists 0 < ρ < ( 12 )
(N−1)/N such that Φ(0, v) ≥ α for every

‖v‖ = ρ, that is (i).
Now, we give the proof of (ii). From (G1),

G(x, s) ≥ cp
p
|s|p, for all (x, s) ∈ Ω̄×R.

Thus,

Φ(u, v) ≤ 1

N
‖v‖N − cp

p
|v|pp

≤ max
v∈Ek0

{ 1

N
‖v‖N − cp

p
|v|pp}

= max
{t≥0, ν∈∂B1(0)∩Ek0

}
{ 1

N
tN − tpcp

p
|ν|pp}

= (
1

N
− 1

p
)

1

c
N

p−N
p

(
1

|ν|pp )
N

p−N (27)

We set r = min{∫
Ω
|ν|pdx : ν ∈ ∂B1(0) ∩ Ek0}. Since p > N , we obtain that

Φ(u, v) ≤ (
1

N
− 1

p
)

1

c
N

p−N
p

(
1

r
)

N
p−N

Let β = ( 1
N − 1

p )
1

c
N

p−N
p

( 1r )
N

p−N . ¤

Lemma 2.4. Suppose that the assumptions (F1)−(F2), (G1)−(G2) and (R1)−
(R3) hold. Let {(unk

, vnk
)} be a sequence such that (unk

, vnk
) ∈ Xnk

and

Φ(unk
, vnk

) → c ∈ [α, β], dΦnk
(unk

, vnk
) → 0, as k → ∞, (28)

then (unk
, vnk

) is bounded in Xnk
. Moreover, there is k0 ∈ N and m ∈ (0, 1)

such that

‖vnk
‖N/(N−1), ‖unk

‖N/(N−1) ≤ m, for all k ≥ k0. (29)

Proof. We start observing that the condition (G2) implies that

0 ≤ µG(x, s) ≤ g(x, s)s, for all s ∈ R and x ∈ Ω. (30)
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From (28),

Φ(unk
, vnk

)− 〈Φ′
nk
(unk

, vnk
), (

1

ν
unk

,
1

µ
vnk

)〉 = c+ ok(1)‖(unk
, vnk

)‖. (31)

By (G1)− (G2), (F2), (R3) and (30),

(
1

N
− 1

µ
)‖vnk

‖N + (
1

ν
− 1

N
)‖unk

‖N

≤ Φ(unk
, vnk

)− 〈Φ′
nk
(unk

, vnk
), (

1

ν
unk

,
1

µ
vnk

)〉
≤ β, (32)

from where it follows that (unk
, vnk

) is bounded in Xnk
. Consequently,

lim sup
k→∞

‖vnk
‖N ≤ µNβ

µ−N

and

lim sup
k→∞

‖unk
‖N ≤ νNβ

ν −N
.

From (G3) and Lemma 2.3, we get

lim sup
k→∞

‖vnk
‖N , lim sup

k→∞
‖unk

‖N < 1. (33)

Therefore, there are k0 ∈ N and m ∈ (0, 1) such that

‖vnk
‖N/(N−1), ‖unk

‖N/(N−1) ≤ m, for all k ≥ k0,

which proves the lemma. ¤
Lemma 2.5. Φ satisfies (PS)∗c , ∀c ∈ [α, β].

Proof. By (28), we have

Φ(unk
, vnk

) = − 1

N

∫

Ω

|∇unk
|Ndx+

1

N

∫

Ω

|∇vnk
|Ndx−

∫

Ω

F (x, unk
)dx (34)

−
∫

Ω

G(x, vnk
)dx−

∫

Ω

R(x, unk
, vnk

)dx

→ c ∈ [α, β],

〈dΦnk
(unk

, vnk
), (ũ, ṽ)〉 = −

∫

Ω

|∇unk
|N−2∇unk

∇ũdx−
∫

Ω

f(x, unk
)ũdx (35)

+

∫

Ω

|∇vnk
|N−2∇vnk

∇ṽdx−
∫

Ω

g(x, vnk
)ṽdx

−
∫

Ω

Ru(x, unk
, vnk

)ũdx−
∫

Ω

Rv(x, unk
, vnk

)ṽdx

→ 0, as k → ∞.

By Lemma 2.4, since (unk
, vnk

) is bounded, we assume

unk
⇀ u in W 1,N

0 (Ω),
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vnk
⇀ v in W 1,N

0 (Ω),

unk
⇀ u, a.e. on Ω,

vnk
⇀ v, a.e. on Ω.

According to (See [1, 2, 12, 23])

〈|x|p−2x− |y|p−2y, x− y〉 ≥ |x− y|p for p ≥ 2, (36)

we have ∫

Ω

|∇unk
|N−2∇unk

∇ũdx →
∫

Ω

|∇u|N−2∇u∇ũdx (37)

and ∫

Ω

|∇vnk
|N−2∇vnk

∇ṽdx →
∫

Ω

|∇v|N−2∇v∇ṽdx. (38)

Let m be the constant given by Lemma 2.4. Since m is independent of nk, the
weak convergent implies that

‖u‖N/(N−1), ‖v‖N/(N−1) ≤ m. (39)

On the other hand,

‖unk
‖N/(N−1), ‖vnk

‖N/(N−1) ≤ m < 1, for all k ≥ k0,

thus, by Proposition 2.2 and Lemma 2.2 it follows that∫

Ω

f(x, unk
)udx →

∫

Ω

f(x, u)udx,

∫

Ω

f(x, unk
)unk

dx →
∫

Ω

f(x, u)udx, (40)
∫

Ω

g(x, vnk
)vdx →

∫

Ω

g(x, v)vdx,
∫

Ω

g(x, vnk
)vnk

dx →
∫

Ω

g(x, v)vdx, (41)
∫

Ω

Ru(x, unk
, vnk

)unk
dx →

∫

Ω

Ru(x, u, v)udx, (42)
∫

Ω

Ru(x, unk
, vnk

)udx →
∫

Ω

Ru(x, u, v)udx,
∫

Ω

Rv(x, unk
, vnk

)vnk
dx →

∫

Ω

Rv(x, u, v)vdx, (43)

and ∫

Ω

Rv(x, unk
, vnk

)vdx →
∫

Ω

Rv(x, u, v)vdx

as k → ∞.
It follows from (35) that

−
∫

Ω

|∇u|N−2∇u∇ũdx+

∫

Ω

|∇v|N−2∇v∇ṽdx−
∫

Ω

f(x, u)ũdx

−
∫

Ω

g(x, v)ṽdx−
∫

Ω

Ru(x, u, v)ũdx−
∫

Ω

Rv(x, u, v)ṽdx = 0. (44)
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By setting (ũ, ṽ) = (u, 0), we get
∫

Ω

|∇u|Ndx+

∫

Ω

f(x, u)udx+

∫

Ω

Ru(x, u, v)udx = 0; (45)

and then setting (ũ, ṽ) = (0, v), we have
∫

Ω

|∇v|Ndx−
∫

Ω

g(x, v)vdx−
∫

Ω

Rv(x, u, v)vdx = 0. (46)

Note that

〈dΦnk
(unk

, vnk
), (0, vnk

)〉 =
∫

Ω

|∇vnk
|Ndx−

∫

Ω

g(x, vnk
)vnk

dx (47)

−
∫

Ω

Rv(x, unk
, vnk

)vnk
dx

→ 0,

〈dΦnk
(unk

, vnk
), (unk

, 0)〉 = −
∫

Ω

|∇unk
|Ndx−

∫

Ω

f(x, unk
)unk

dx (48)

−
∫

Ω

Ru(x, unk
, vnk

)unk
dx

→ 0.

Let ωnk
= unk

− u, ζnk
= vnk

− v. By Brézis-Lieb Lemma [22], (47)-(48) can be
changed to ∫

Ω

|∇ζnk
|Ndx+

∫

Ω

|∇v|Ndx−
∫

Ω

g(x, vnk
)vnk

dx (49)

−
∫

Ω

Rv(x, unk
, vnk

)vnk
dx → 0,

−
∫

Ω

|∇ωnk
|Ndx−

∫

Ω

|∇u|Ndx−
∫

Ω

f(x, unk
)unk

dx (50)

−
∫

Ω

Ru(x, unk
, vnk

)unk
dx → 0,

By (45)-(46), it is easy to obtain
∫

Ω

|∇ζnk
|Ndx+

∫

Ω

g(x, v)vdx+

∫

Ω

Rv(x, u, v)vdx (51)

−
∫

Ω

g(x, vnk
)vnk

dx−
∫

Ω

Rv(x, unk
, vnk

)vnk
dx → 0,

∫

Ω

|∇ωnk
|Ndx−

∫

Ω

f(x, u)udx−
∫

Ω

Ru(x, u, v)udx (52)

+

∫

Ω

f(x, unk
)unk

dx+

∫

Ω

Ru(x, unk
, vnk

)unk
dx → 0,
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By (40)-(43), we obtain ∫

Ω

|∇ζnk
|Ndx → 0

and ∫

Ω

|∇ωnk
|Ndx → 0.

That is
unk

→ u, in W 1,N
0

and
vnk

→ v, in W 1,N
0 .

Then we complete the proof of Lemma 2.5 ¤

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1. Now we shall verify the conditions of Theorem 2.1.
It is clear that (B1), (B2), (B4) in Theorem 2.1 are satisfied. Set Vj = Ej =

span{e1, e2, · · · ej}, then (B3) is also satisfied. Since 1 = dim Ỹ0 < k0 = dimY1,
(B5) is satisfied. Since Fix G

⋂
V = 0, that is (a) of (B7) holds. (b)− (c) of (B7)

can be obtained by Lemma 2.3. By Lemma 2.5, (B6) in Theorem 2.1 hold. So
according to Theorem 2.1,

cj = inf
i∞(A)≥j

sup
(u,v)∈A

Φ(u, v), −k0 + 1 ≤ j ≤ −1

are critical values of Φ, α ≤ c−k0+1 ≤ · · · ≤ c−1 ≤ β, and Φ has at least k0 − 1
pairs critical points.
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