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Abstract. In this paper, we shall establish a new theorem on the existence
and uniqueness of the solution to a backward doubly stochastic differential
equations under a weaker condition than the Lipschitz coefficient. We also
show a comparison theorem for this kind of equations.
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1. Introduction

Nonlinear backward stochastic differential equations (BSDEs in short) were
published by Pardoux and Peng [1] in 1990, BSDEs have attracted great interest
from both mathematical community and financial community (cf. [2], [3] and
the references therein). One of the main reasons is that the theory of BSDEs has
been an important and fundamental tool for mathematical economics and for
mathematical finance in particular. Another main reason is due to their enor-
mous range of applications in such diverse fields as partial differential equations,
stochastic partial differential equations, stochastic control, stochastic differen-
tial games, nonlinear mathematical expectations and so on. Amongst these
researches of BSDEs, much effort was devoted to loosen the uniform Lipschitz
conditions on coefficients of BSDEs (e.g., [4-6]).

After they introduced the theory of BSDEs, Pardoux and Peng [7] in 1994
brought forward a new kind of BSDEs, that is a class of backward doubly sto-
chastic differential equations (BDSDEs in short) with two different directions of
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stochastic integrals, i.e., the equations involve both a standard (forward) sto-
chastic integral dWt and a backward stochastic integral dBt. They have proved
the existence and uniqueness of solution to BDSDEs under uniformly Lipschitz
conditions on coefficients. That is, for a given terminal time T > 0, under the
uniformly Lipschitz assumptions on coefficients f and g, for any square inte-
grable terminal value ξ, the following BDSDE has a unique solution pair (yt, zt)
in the interval [0, T ]:

yt = ξ +

∫ T

t

f(s, ys, zs)ds+

∫ T

t

g(s, ys, zs)dBs −
∫ T

t

zsdWs. (1)

Pardoux and Peng [7] showed that BDSDEs can produce a probabilistic represen-
tation for certain quasilinear stochastic partial differential equations (SPDEs).
In order to study more general SPDEs, recently Peng and Shi [8] introduce a
class of forward-backward doubly stochastic differential equations, under Lips-
chitz condition and monotonicity assumption. However, it is somehow too strong
to require the uniform Lipschitz continuity in applications, e.g. in dealing with
quasilinear parabolic SPDEs. So it is important to find some weaker conditions
than the Lipschitz one under which BDSDE has a unique solution.

In [9] Shi et al. weaken the uniform Lipschitz assumption to linear growth
and continuous conditions by virtue of the comparison theorem that is intro-
duced by themselves. They obtained the existence of solutions to BDSDE but
without uniqueness. The aim of the present paper is to obtain the existence and
uniqueness of solution to BDSDE without uniform Lipschitz assumptions. We
also give a comparison theorem of this kind equations, generalize the results of
[9].

This paper is organized as follows: in Section 2 we present the setting of
problems and the main assumptions; in Section 3 we prove the existence and
uniqueness theorem of BDSDE under non-Lipschitz condition; at the end we
discuss a comparison theorem in Section 4.

2. Setting of Backward Doubly Stochastic Differential Equations

The Euclidean norm of a vector x ∈ Rk will be denoted by |x|, and for a d×k

matrix A, we define ‖A‖ =
√
TrAA∗, where A∗ is the transpose of A.

Let (Ω,F , P ) be a probability space, and T be an arbitrarily fixed positive
constant throughout this paper. Let {Wt; 0 ≤ t ≤ T} and {Bt; 0 ≤ t ≤ T} be
two mutually independent standard Brownian Motions with values in Rd and
Rl, respectively, defined on (Ω,F , P ). Let N denote the class of P -null sets of
F . For each t ∈ [0, T ], we define

Ft
.
= FW

t ∨ FB
t,T ,

where for any process {ηt}, Fη
s,t = σ {ηr − ηs; s ≤ r ≤ t} ∨ N ,Fη

t = Fη
0,t.

We note that the collection {Ft; t ∈ [0, T ]} is neither increasing nor decreasing,
so it does not constitute a classical filtration.
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For any n ∈ N , letM2(0, T ;Rn) denote the set of (classes of dP⊗dt a.e. equal)
n-dimensional jointly measurable stochastic processes {ϕt; t ∈ [0, T ]} which sat-
isfy:

(i) ‖ϕ‖2M2 := E
∫ T

0
|ϕt|2dt < ∞;

(ii) ϕt is Ft-measurable, for any t ∈ [0, T ].
Similarly, we denote by S2([0, T ];Rn) the set of n-dimensional continuous

stochastic processes {ϕt; t ∈ [0, T ]} which satisfy:
(iii) ‖ϕ‖2S2 := E( sup

0≤t≤T
|ϕt|2) < ∞;

(iv) ϕt is Ft-measurable, for any t ∈ [0, T ].
Obviously, M2(0, T ;Rn) and S2([0, T ];Rn) are Hilbert Space.

Given ξ ∈ L2(Ω,FT , P ;Rk), we consider the following BDSDE:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

g(s, Ys, Zs)dBs −
∫ T

t

ZsdWs, 0 ≤ t ≤ T. (2)

We note that the integral with respect to {Bt} is a “backward Itô integral” and
the integral with respect to {Wt} is a standard forward Itô integral, these two
types of integrals are particular cases of the Itô-Skorohod integral (see [10]).

Definition 1. A pair of processes (Y,Z) : Ω × [0, T ] → Rk × Rk×d is called a
solution of BDSDE (2), if (Y,Z) ∈ S2([0, T ];Rk) × M2(0, T ;Rk×d) and satisfy
BDSDE (2).

Let f : Ω× [0, T ]×Rk ×Rk×d → Rk, g : Ω× [0, T ]×Rk ×Rk×d → Rk×l be
jointly measurable and satisfy the following assumption:

(H1) f(·, 0, 0) ∈ M2(0, T ;Rk), g(·, 0, 0) ∈ M2(0, T ;Rk×l).
(H2) For all (ω, t) ∈ Ω× [0, T ], (y1, z1), (y2, z2) ∈ Rk ×Rk×d and t ∈ [0, T ],

|f(t, y1, z1)− f(t, y2, z2)|2 ≤ ρ(t, |y1 − y2|2) + c||z1 − z2||2,
‖g(t, y1, z1)− g(t, y2, z2)‖2 ≤ ρ(t, |y1 − y2|2) + α||z1 − z2||2,

where c > 0 and 0 < α < 1 are two constants, ρ : [0, T ] × R+ → R+ is
a continuous non-random function, for fixed t, with respect to u is a concave
nondecreasing function, such that ρ(t, 0) = 0, ∀t ∈ [0, T ] and the following ODE

{
u

′
= −ρ(t, u)

u(T ) = 0

has a unique solution u(t) ≡ 0, t ∈ [0, T ].

3. Existence and uniqueness theorem

Under assumptions (H1) and (H2), we can construct an approximate sequence
using a Picard-type iteration . Let y0t ≡ 0, and let {ynt , znt }n≥1 be a sequence in
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S2
(
[0, T ] ;Rk

)×M2
(
0, T ;Rk×d

)
defined recursively by

ynt = ξ +

∫ T

t

f(s, yn−1
s , zns )ds+

∫ T

t

g(s, yn−1
s , zns )dBs

−
∫ T

t

zns dWs, 0 ≤ t ≤ T.

(3)

For each given
(
yn−1
s

) ∈ S2
(
[0, T ] ;Rk

)
, According to the results of Pardoux and

Peng (1994), there exists a unique pair (yns , z
n
s ) ∈ S2

(
[0, T ] ;Rk

)×M2
(
0, T ;Rk×d

)
satisfying (3).

We first give some lemmas.

Lemma 1. If ξ ∈ L2(Ω,FT , P ;Rk), f and g satisfy (H1) and (H2), ∀ 0 ≤ t ≤ T ,
it holds that

E|y1
t |2 ≤ e

(2c+α)T
1−α

[
E|ξ|2 + 2(1− α)

2c+ α
E

∫ T

t

|f(s, 0, 0)|2ds+ 2c+ 1

1− α
E

∫ T

t

||g(s, 0, 0)||2ds
]
.

Proof. Applying the extension of Itô formula (see [4]) to |y1t |2, one can derive
that

E|y1t |2 + E

∫ T

t

||z1s ||2ds

= E|ξ|2 + 2E

∫ T

t

(y1s , f(s, 0, z
1
s))ds+ E

∫ T

t

||g(s, 0, z1s)||2ds

≤ E|ξ|2 + 1

θ
E

∫ T

t

|y1s |2ds+ θE

∫ T

t

|f(s, 0, z1s)|2ds+ E

∫ T

t

||g(s, 0, z1s)||2ds.

From (H2) we have

|f(s, 0, z1s)|2 ≤ 2|f(s, 0, 0)|2 + 2c||z1s ||2,
||g(s, 0, z1s)||2 ≤ 1 + θ

θ
||g(s, 0, 0)||2 + (1 + θ)α||z1s ||2.

So

E|y1t |2 + E

∫ T

t

||z1s ||2ds ≤ E|ξ|2 + 1

θ
E

∫ T

t

|y1s |2ds

+ E

∫ T

t

[
2θ|f(s, 0, 0)|2 + 1 + θ

θ
||g(s, 0, 0)||2

]
ds

+ (2θc+ (1 + θ)α)E

∫ T

t

||z1s ||2ds.

We let θ = 1−α
2c+α > 0 is a constant, then

E|y1t |2 ≤ E|ξ|2 + 1

θ
E

∫ T

t

|y1s |2ds+ E

∫ T

t

[2θ|f(s, 0, 0)|2 + 1 + θ

θ
||g(s, 0, 0)||2]ds
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Now fix r ∈ [0, T ] arbitrarily. If t ≤ r ≤ T , then

E|y1r |2 ≤ E|ξ|2 + 1

θ
E

∫ T

r

|y1s |2ds+ E

∫ T

t

[2θ|f(s, 0, 0)|2 + 1 + θ

θ
||g(s, 0, 0)||2]ds

From Gronwall inequality, we see that

E|y1r |2 ≤ e
(2c+α)(T−r)

1−α

[
E|ξ|2 +

2(1− α)

2c+ α
E

∫ T

t

|f(s, 0, 0)|2ds+ 2c+ 1

1− α
E

∫ T

t

||g(s, 0, 0)||2ds
]
.

Since r is arbitrary, so

E|y1t |2 ≤ e
(2c+α)T

1−α

[
E|ξ|2 +

2(1− α)

2c+ α
E

∫ T

t

|f(s, 0, 0)|2ds+ 2c+ 1

1− α
E

∫ T

t

||g(s, 0, 0)||2ds
]
.

¤

Lemma 2. Under the assumptions of Lemma 1, for ∀0 ≤ t ≤ T, n,m ≥ 1, such
that

E|yn+m
t − ynt |2 ≤ e

cT
1−α

(
1− α

c
+ 1

)∫ T

t

ρ(s,E|yn+m−1
s − yn−1

s |2)ds.

Proof. Applying the extension of Itô formula to |yn+m
t − ynt |2 we have

E|yn+m
t − ynt |2 + E

∫ T

t

||zn+m
s − zns ||2ds

= 2E

∫ T

t

(yn+m
s − yns , f(s, y

n+m−1
s , zn+m

s )− f(s, yn−1
s , zns ))ds

+ E

∫ T

t

||g(s, yn+m−1
s , zn+m

s )− g(s, yn−1
s , zns )||2ds

≤ 1

θ
E

∫ T

t

|yn+m
s − yns |2ds+ θE

∫ T

t

|f(s, yn+m−1
s , zn+m

s )− f(s, yn−1
s , zns )|2ds

+ E

∫ T

t

||g(s, yn+m−1
s , zn+m

s )− g(s, yn−1
s , zns )||2ds

≤ 1

θ
E

∫ T

t

|yn+m
s − yns |2ds+ (θ + 1)E

∫ T

t

ρ(s, |yn+m−1
s − yn−1

s |2)ds

+ (θc+ α)E

∫ T

t

||zn+m
s − zns ||2ds

≤ 1

θ
E

∫ T

t

|yn+m
s − yns |2ds+ (θ + 1)

∫ T

t

ρ(s,E|yn+m−1
s − yn−1

s |2)ds

+ (θc+ α)E

∫ T

t

||zn+m
s − zns ||2ds.
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The last inequality is due to Jensen’s inequality, let θ = 1−α
c > 0 is a constant,

in the same way as the Lemma 1 we have

E|yn+m
t − ynt |2 ≤ e

cT
1−α

(
1− α

c
+ 1

)∫ T

t

ρ(s,E|yn+m−1
s − yn−1

s |2)ds.

¤
Theorem 1. Under the assumptions of Lemma 1, let M = max

(t,u)∈[0,T ]×[0,b]
ρ(t, u).

If

e
(2c+α)T

1−α [E|ξ|2 +
2(1− α)

2c+ α
E

∫ T

t

|f(s, 0, 0)|2ds+ 2c+ 1

1− α
E

∫ T

t

||g(s, 0, 0)||2ds] ≤ b, ∀t ∈ [0, T ].

Then there exists a unique solution (yt, zt) ∈ S2([T1, T ];R
k)×M2(T1, T ;R

k×d)

satisfy BDSDE (2), where T − T1 = min

{
T, b

M( 1−α
c +1)e

cT
1−α

}
.

Proof. (Existence): For ∀t ∈ [T1, T ], we let

φ0(t) = (
1− α

c
+ 1)Me

cT
1−α (T − t) ≤ b,

φn+1(t) = (
1− α

c
+ 1)e

cT
1−α

∫ T

t

ρ(s, φn(s))ds.

Obviously

φ1(t) = (
1− α

c
+ 1)e

cT
1−α

∫ T

t

ρ(s, φ0(s))ds ≤ (
1− α

c
+ 1)Me

cT
1−α (T − t) = φ0(t) ≤ b,

φ2(t) = (
1− α

c
+ 1)e

cT
1−α

∫ T

t

ρ(s, φ1(s))ds ≤ (
1− α

c
+ 1)e

cT
1−α

∫ T

t

ρ(s, φ0(s))ds = φ1(t) ≤ b

· · ·
By induction, for all n = 0, 1, 2, · · · , φn(t) satisfies

0 ≤ φn+1(t) ≤ φn(t) ≤ · · · ≤ φ1(t) ≤ φ0(t) ≤ b,

and

|φ′
n+1(t)| = (

1− α

c
+ 1)e

cT
1−α |ρ(s, φn(t))| ≤ (

1− α

c
+ 1)e

cT
1−αM.

So {φn(t)}n≥0 is continuous on [T1, T ] and nonincreasing monotonically as n →
∞. Therefore we can define the function φ(t) by the limit of φn(t). Then φ(t)
is continuous on [T1, T ] and φ(T ) = 0. From the assumptions of the theorem,
φ(t) = 0, t ∈ [T1, T ]. From Lemma 1 we get

E|y1
t |2 ≤ e

(2c+α)T
1−α [E|ξ|2+2(1− α)

2c+ α
E

∫ T

t

|f(s, 0, 0)|2ds+2c+ 1

1− α
E

∫ T

t

||g(s, 0, 0)||2ds] ≤ b.

From Lemma 2 we have

E|yn+1
t − ynt |2 ≤ e

cT
1−α (

1− α

c
+ 1)

∫ T

t

ρ(s,E|yns − yn−1
s |2)ds.
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So

E|y2
t − y1

t |2 ≤ e
cT

1−α (
1− α

c
+ 1)

∫ T

t

ρ(s, b)ds ≤ (
1− α

c
+ 1)Me

cT
1−α (T − t) = φ0(t)

E|y3
t − y2

t |2 ≤ e
cT

1−α (
1− α

c
+ 1)

∫ T

t

ρ(s, E|y2
s − y1

s |2)ds

≤ e
cT

1−α (
1− α

c
+ 1)

∫ T

t

ρ(s, φ0(s))ds = φ1(t)

· · ·
So for all n ∈ N , when t ∈ [T1, T ], we obtain

E|yn+1
t − ynt |2 ≤ φn−1(t) ≤ b.

Let n,m ∈ N,m > n, for all t ∈ [T1, T ],

E|ymt − ynt |2 ≤ 3[E|yn+1
t − ynt |2 + E|ym+1

t − ymt |2 + E|ym+1
t − yn+1

t |2]

≤ 3φn−1(t) + 3φm−1(t) + 3e
cT

1−α (
1− α

c
+ 1)

∫ T

t

ρ(s, E|yms − yns |2)ds

≤ 6φn−1(t) + 3e
cT

1−α (
1− α

c
+ 1)

∫ T

t

ρ(s,E|yms − yns |2)ds.

Since φn(t) → 0, when n → ∞. So ∃N0, such that φn−1(t) ≤ ε
6 whenever

n ≥ N0.
Therefore when m > n ≥ N0,

E|ymt − ynt |2 ≤ ε+ 3e
cT

1−α (
1− α

c
+ 1)

∫ T

t

ρ(s,E|yms − yns |2)ds.

From the comparison of ODE we have

E|ymt − ynt |2 ≤ r(t, ε),m > n ≥ N0, t ∈ [T1, T ].

where r(t, ε) is the maximum solution of the left column of the following equation:
{

u
′
= −3e

cT
1−α ( 1−α

c + 1)ρ(t, u)
u(T ) = ε

When ε → 0, r(t, ε) uniformly convergence the maximum solution of the left
column of the following problems,

{
u

′
= −3e

cT
1−α ( 1−α

c + 1)ρ(t, u)
u(T ) = 0

From (H2), we have u(t) ≡ 0. So

E|ymt − ynt |2 → 0, n,m → ∞.

We immediately see that {ynt , n = 1, 2 · · · } is a Cauchy sequence in S2
(
[T1, T ];R

k
)

and {znt , n = 1, 2 · · · } is also a Cauchy sequence in M2
(
T1, T ;R

k×d
)
. Define

their limits by y(·) and z(·) respectively, then (y(·), z(·)) ∈ S2
(
[T1, T ];R

k
) ×

M2
(
T1, T ;R

k×d
)
and satisfy BDSDE (2). The existence has been proved.
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(Uniqueness): Let both (Y i
· , Z

i
· ) be the two solutions of (2), (i = 1, 2). Apply-

ing the extension of the Itô formula to
∣∣Y 1

t − Y 2
t

∣∣2, Jensen’s inequality and the
assumption (H2) it follows that

E|Y 1
t − Y 2

t |2 + E

∫ T

t

||Z1
s − Z2

s ||2ds

≤ 1

θ
E

∫ T

t

|Y 1
s − Y 2

s |2ds+ (θ + 1)

∫ T

t

ρ(s, E|Y 1
s − Y 2

s |2)ds

+ (θc+ α)E

∫ T

t

||Z1
s − Z2

s ||2ds.

Let θ = 1−α
2c we have

E|Y 1
t − Y 2

t |2 +
1− α

2
E

∫ T

t

||Z1
s − Z2

s ||2ds

≤ 2c

1− α
E

∫ T

t

|Y 1
s − Y 2

s |2ds+ (
1− α

2c
+ 1)

∫ T

t

ρ(s,E|Y 1
s − Y 2

s |2)ds. (4)

From the Gronwall inequality

E|Y 1
t − Y 2

t |2 ≤ e
2c

1−α (
1− α

2c
+ 1)

∫ T

t

ρ(s, E|Y 1
s − Y 2

s |2)ds.

From the comparison of the ODE we have

E|Y 1
t − Y 2

t |2 ≤ r(t), ∀t ∈ [T1, T ].

Where r(t) is the maximum solution of the left column of the following equation:
{

u
′
= −e

2c
1−α ( 1−α

2c + 1)ρ(t, u)
u(T ) = 0

From the assumption r(t) = 0, t ∈ [T1, T ]. So E|Y 1
t −Y 2

t |2 = 0, t ∈ [T1, T ], this
means Y 1

t = Y 2
t , a.s.. It then follows from (4) that Z1

t = Z2
t , a.s., ∀T1 ≤ t ≤ T .

The uniqueness has been proved. ¤

If function ρ(t, u) also satisfy the following assumption:

(H3): ρ(t, u) ≤ a(t) + b(t)u, t ≥ 0, where a(t) ≥ 0, b(t) ≥ 0 and such
that ∫ T

0

a(t)dt < +∞,

∫ T

0

b(t)dt < +∞.

Then we also can assert the following existence and uniqueness theorem.

Theorem 2. If ξ ∈ L2(Ω,FT , P ;Rk). f and g satisfy (H1), (H2) and (H3).
Then BDSDE (2)has a unique solution (yt, zt) ∈ S2([0, T ];Rk)×M2(0, T ;Rk×d).

Proof. From Lemma 1,

E|y1
t |2 ≤ e

(2c+α)T
1−α [E|ξ|2 + 2(1− α)

2c+ α
E

∫ T

t

|f(s, 0, 0)|2ds+ 2c+ 1

1− α
E

∫ T

t

||g(s, 0, 0)||2ds].
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From (H3) we have

E|y1
t |2 ≤ e

(2c+α)T
1−α [E|ξ|2 + 2(1− α)

2c+ α
E

∫ T

t

|f(s, 0, 0)|2ds+ 2c+ 1

1− α
E

∫ T

t

||g(s, 0, 0)||2ds

+ (
1− α

c
+ 1)

∫ T

t

a(s)ds] ≤ b̄ < +∞. (5)

We choose T1 ∈ [0, T ], such that

(
1− α

c
+ 1)e

cT
1−α

∫ T

t

ρ(s, b̄)ds ≤ b̄, t ∈ [T1, T ]. (6)

We can show T1 is exist and its value does not depend on the final value ξ. Since
(H3), we note that (6) holds if

(
1− α

c
+ 1)e

cT
1−α

∫ T

t

a(s)ds+ (
1− α

c
+ 1)e

cT
1−α b̄

∫ T

t

b(s)ds ≤ b̄

but by (5),

(
1− α

c
+1)e

cT
1−α

∫ T

t

a(s)ds = (
1− α

c
+1)e

cT
1−α e−

(2c+α)T
1−α e

(2c+α)T
1−α

∫ T

t

a(s)ds ≤ b̄e−
(c+α)T

1−α ,

this holds if

b̄e−
(c+α)T

1−α + (
1− α

c
+ 1)e

cT
1−α b̄

∫ T

t

b(s)ds ≤ b̄

and so if ∫ T

t

b(s)ds ≤ (1− e−
(c+α)T

1−α )e
−cT
1−α

c

1− α+ c
.

So we choose T1, such that
∫ T

T1

b(s)ds = (1− e−
(c+α)T

1−α )e
−cT
1−α

c

1− α+ c
.

In fact, if ∫ T

0

b(s)ds < (1− e−
(c+α)T

1−α )e
−cT
1−α

c

1− α+ c
,

we choose T1 = 0; otherwise we choose T1, such that
∫ T

T1

b(s)ds = (1− e−
(c+α)T

1−α )e
−cT
1−α

c

1− α+ c
,

so the value of T1 does not depends on the final value ξ.
For all t ∈ [T1, T ], let

ψ1(t) = (
1− α

c
+ 1)e

cT
1−α

∫ T

t

ρ(s, b̄)ds

ψn+1(t) = (
1− α

c
+ 1)e

cT
1−α

∫ T

t

ρ(s, ψn(s))ds.
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Obviously,

ψ1(t) ≤ b̄,

ψ2(t) = (
1− α

c
+ 1)e

cT
1−α

∫ T

t

ρ(s, ψ1(s))ds

≤ (
1− α

c
+ 1)e

cT
1−α

∫ T

t

ρ(s, b̄)ds = ψ1(t) ≤ b̄,

ψ3(t) = (
1− α

c
+ 1)e

cT
1−α

∫ T

t

ρ(s, ψ2(s))ds

≤ (
1− α

c
+ 1)e

cT
1−α

∫ T

t

ρ(s, ψ1(s))ds = ψ2(t) ≤ b̄ · · ·

So for all n = 1, 2, · · · , ψn(t) is continuous and

0 ≤ ψn+1(t) ≤ ψn(t) ≤ · · · ≤ ψ1(t) ≤ b̄.

In the same way of the Theorem 1, we have {ψn(t), t ∈ [T1, T ]}n≥1 convergence
ψ(t) = 0.
From Lemma 2,

E|yn+1
t − ynt |2 ≤ e

cT
1−α (

1− α

c
+ 1)

∫ T

t

ρ(s,E|yns − yn−1
s |2)ds.

So when t ∈ [T1, T ], we have

E|y2t − y1t |2 ≤ e
cT

1−α (
1− α

c
+ 1)

∫ T

t

ρ(s,E|y1s |2)ds

≤ (
1− α

c
+ 1)e

cT
1−α

∫ T

t

ρ(s, b̄)ds = ψ1(t),

E|y3t − y2t |2 ≤ e
cT

1−α (
1− α

c
+ 1)

∫ T

t

ρ(s,E|y2s − y1s |2)ds

≤ e
cT

1−α (
1− α

c
+ 1)

∫ T

t

ρ(s, ψ1(s))ds = ψ2(t) · · ·

So by induction, for all n ∈ N

E|yn+1
t − ynt |2 ≤ ψn(t), t ∈ [T1, T ].

In the same way of Theorem 1, there exist a unique (yt, zt) ∈ S2([T1, T ];R
k) ×

M2(T1, T ;R
k×d) satisfies BDSDE (2). In other words, we have showed the

existence of the solution on [T1, T ]. Since the value of T1 does not depend
on the final value ξ. If T1 = 0, then we have showed the existence of the
solution on [0, T ]; otherwise we set the final value be yT1 , in the same way, we
get (yt, zt) ∈ S2

(
[T2, T1];R

k
)×M2(T2, T1;R

k×d) such that

yt = yT1 +

∫ T1

t

f(s, ys, zs)ds+

∫ T1

t

g(s, ys, zs)dBs −
∫ T1

t

zsdWs,
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where if
∫ T1

0
b(s)ds ≤ (1 − e−

(c+α)T
1−α )e

−cT
1−α c

1−α+c , we let T2 = 0, otherwise we

let
∫ T1

T2
b(s)ds = (1 − e−

(c+α)T
1−α )e

−cT
1−α c

1−α+c . . . , hence one can deduce by iter-

ation the existence of the solution on [Tn, T ], i.e., (yt, zt) ∈ S2([Tn, T ];R
k) ×

M2(Tn, T ;R
k×d) such that BDSDE (2) holds on [Tn, T ], and T, Tn (n = 1, 2, . . . )

satisfy
∫ T

T1

b(s)ds =

∫ T1

T2

b(s)ds = · · · =
∫ Tn−1

Tn

b(s)ds = (1− e−
(c+α)T

1−α )e
−cT
1−α

c

1− α+ c
,

T ≥ T1 ≥ T2 ≥ · · · ≥ Tn. So there is an enough large n such that
∫ T

Tn
b(s)ds =

n(1 − e−
(c+α)T

1−α )e
−cT
1−α c

1−α+c > T . Therefore we have (yt, zt) ∈ S2([0, T ];Rk) ×
M2(0, T ;Rk×d) satisfies (2). ¤
Remark: When ρ(t, u) is independent of t, i.e.

(A1): For all (y1, z1), (y2, z2) ∈ Rk ×Rk×d and t ∈ [0, T ],

|f(t, y1, z1)− f(t, y2, z2)|2 ≤ ρ(|y1 − y2|2) + c||z1 − z2||2;
‖g(t, y1, z1)− g(t, y2, z2)‖2 ≤ ρ(|y1 − y2|2) + α||z1 − z2||2.
where c > 0 and 0 < α < 1 are two constants and ρ : R+ → R+ is a
concave nondecreasing function, such that ρ(0) = 0, ρ(u) > 0, ∀u > 0,
and

∫
0+

du
ρ(u) = ∞,

If (A1) holds, then (H2) also holds. In fact, we consider the following ODE
{

u
′
= −ρ(u)

u(T ) = 0

Then

u(t) =

∫ T

t

ρ(u(s))ds, t ∈ [0, T ].

Since
∫
0+

du
ρ(u) = ∞, we can prove u(t) = 0, t ∈ [0, T ], i.e. the ODE has a unique

solution u(t) ≡ 0, t ∈ [0, T ]. That is, if the assumption (A1) holds, then (H2)
also holds, while (H3) obviously holds. Thus, the conditions of Theorem 2 all
hold, from the Theorem 2 BDSDE (2) has a unique solution.

Inference If ξ ∈ L2(Ω,FT , P ;Rk). f and g satisfy (H1) and (A1). Then
BDSDE (2) has a unique solution (yt, zt) ∈ S2([0, T ];Rk)×M2(0, T ;Rk×d).

4. Comparison theorem

In this section, we only consider one-dimensional BDSDEs, i.e., k = 1. We
consider the following BDSDEs:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

g(s, Ys, Zs)dBs −
∫ T

t

ZsdWs, 0 ≤ t ≤ T, (7)

Ȳt = ξ̄ +

∫ T

t

f̄(s, Ȳs, Z̄s)ds+

∫ T

t

g(s, Ȳs, Z̄s)dBs −
∫ T

t

Z̄sdWs, 0 ≤ t ≤ T, (8)
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where ξ, ξ̄ ∈ L2(Ω,FT , P ;R), f , f̄ , g satisfy the conditions of theorem 2. Then
there exist two pairs of processes (Yt, Zt) and (Ȳt, Z̄t) satisfying BDSDEs (7)
and (8), respectively.

We can assert the following comparison theorem.

Theorem 3. Assume BDSDE (7) and (8) satisfy the conditions of Theorem
2, let (Yt, Zt) and (Ȳt, Z̄t) be solutions of (7) and (8), respectively. If (i)ξ ≤
ξ̄, (ii)f(t, Ȳt, Z̄t) ≤ f̄(t, Ȳt, Z̄t), then

Yt ≤ Ȳt, a.s., ∀t ∈ [0, T ].

Proof. Let

Ŷt = Yt − Ȳt, Ẑt = Zt − Z̄t, ξ̂ = ξ − ξ̄,

f̂t = f(t, Yt, Zt)− f(t, Ȳt, Z̄t), ĝt = g(t, Yt, Zt)− g(t, Ȳt, Z̄t).

Apply the extension of the Itô formula to
∣∣∣Ŷ +

t

∣∣∣
2

we have

E|Ŷ +
t |2 + E

∫ T

t

I(Ys>Ȳs)||Ẑs||2ds

= 2E

∫ T

t

(Ŷ +
s , f(s, Ys, Zs)− f̄(s, Ȳs, Z̄s))ds+ E

∫ T

t

I(Ys>Ȳs)||ĝs||2ds

≤ 2E

∫ T

t

(Ŷ +
s , f(s, Ys, Zs)− f(s, Ȳs, Z̄s))ds+ E

∫ T

t

I(Ys>Ȳs)||ĝs||2ds

≤ 1

θ
E

∫ T

t

|Ŷs
+|2ds+ θE

∫ T

t

I(Ys>Ȳs)(ρ(s, |Ŷs|2) + c||Ẑs||2)ds

+ E

∫ T

t

I(Ys>Ȳs)(ρ(s, |Ŷs|2) + α||Ẑs||2)ds

≤ 1

θ
E

∫ T

t

|Ŷs
+|2ds+ (θ + 1)E

∫ T

t

I(Ys>Ȳs)ρ(s, |Ŷs|2)ds

+ (θc+ α)E

∫ T

t

I(Ys>Ȳs)||Ẑs||2ds

≤ 1

θ
E

∫ T

t

|Ŷs
+|2ds+ (θ + 1)

∫ T

t

ρ(s, E|Ŷ +
s |2)ds+ (θc+ α)E

∫ T

t

I(Ys>Ȳs)||Ẑs||2ds

The last inequality is due to Jensen’s inequality. Where 0 < θ < 1−α
c is a

constant. It implies that

E|Ŷ +
t |2 ≤ 1

θ
E

∫ T

t

|Ŷs
+|2ds+ (θ + 1)

∫ T

t

ρ(s,E|Ŷ +
s |2)ds.

By the same argument in the proof of uniqueness of Theorem 1 we have

E|(Yt − Ȳt)
+|2 = 0, ∀t ∈ [0, T ].

which implies that Yt ≤ Ȳt, a.s, ∀0 ≤ t ≤ T . ¤
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Remark: If ρ(t, u) = cu, then the Theorem 3 is the Theorem 3.1 of [9], i.e. we
generalize the results of [9].
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