DOI QR코드

DOI QR Code

STABILITY PROPERTIES OF A DELAYED VIRAL INFECTION MODEL WITH LYTIC IMMUNE RESPONSE

  • Song, Fang (School of Electronics and Information Engineering, Tongji University) ;
  • Wang, Xia (College of Mathematics and Information Science, Xinyang Normal University) ;
  • Song, Xinyu (College of Mathematics and Information Science, Xinyang Normal University)
  • Received : 2010.08.10
  • Accepted : 2010.10.19
  • Published : 2011.09.30

Abstract

In this paper, a class of more general delayed viral infection model with lytic immune response is proposed by Song et al.[1] ([Journal of Mathematical Analysis Application 373 (2011), 345-355). We derive the basic reproduction numbers $R_0$ and $R_0^*$ 0 for the viral infection, and establish that the global dynamics are completely determined by the values of $R_0$ and $R_0^*$. If $R_0{\leq}1$, the viral-free equilibrium $E_0$ is globally asymptotically stable; if $R_0^*{\leq}1$ < $R_0$, the immune-free equilibrium $E_1$ is globally asymptotically stable; if $R_0^*$ > 1, the chronic-infection equilibrium $E_2$ is globally asymptotically stable by using the method of Lyapunov function.

Keywords

References

  1. X.Y. Song, S.L. Wang and J. Dong, Stability properties and Hopf bifurcation of a delayed viral infection model with lytic immune response, J. Math. Anal. Appl. 373 (2011), 345-355. https://doi.org/10.1016/j.jmaa.2010.04.010
  2. K. Tsuyoshi and S. Toru, A note on the stability analysis of pathogen-immune interaction dynamics, Discrete Contin. Dyn. Syst. Ser. B 4 (2004), 615-622.
  3. W.M. Liu, Nonlinear Oscillations in Models of Immune Responses to Persistent Viruses, Theor. Popul. Biol. 52(1997), 224-230. https://doi.org/10.1006/tpbi.1997.1334
  4. M.A. Nowak and R.M. May, Virus dynamics, Oxford University Press, New York, 2000.
  5. X. Wang and X.Y. Song, Global Properties of a Model of Immune Effector Responses to Viral Infections, Adv. Complex Syst. 10(2007), 495-503. https://doi.org/10.1142/S0219525907001252
  6. C. Bartholdy, J.P. Christensen, D. Wodarz and A.R. Thomsen, Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in Gamma interferon-deficient mice in- fection with lymphocytic choriomeningitis virus, J. Virol. 74 (2000), 10304-10311. https://doi.org/10.1128/JVI.74.22.10304-10311.2000
  7. M.A. Nowak and C.R.M. Bangham, Population dynamics of immune response to persistent viruses, Science 272 (1996), 74-79. https://doi.org/10.1126/science.272.5258.74
  8. D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody response, J. Gen. Virol. 84 (2003), 1743-1750. https://doi.org/10.1099/vir.0.19118-0
  9. D. Wodarz, J.P. Christensen and A.R. Thomsen, The importance of lytic and nonlytic immune response in viral infections, Trends Immunol. 23 (2002), 194-200. https://doi.org/10.1016/S1471-4906(02)02189-0
  10. X. Wang and Y.D. Tao, Lyapunov function and global properties of virus dynamics with immune response, Int. J. Biomath. 1 (2008), 443-448. https://doi.org/10.1142/S1793524508000382
  11. K.F. Wang, W.D. Wang, H.Y. Pang, and X. Liu, Complex dynamic behavior in a viral model with delayed immune response, Phys. D 226 (2007), 197-208. https://doi.org/10.1016/j.physd.2006.12.001
  12. X.Y. Song and A. Neumann, Global stability and periodic solution of the viral dynamics, J. Math. Anal. Appl. 329 (2007), 281-297. https://doi.org/10.1016/j.jmaa.2006.06.064
  13. X.Y. Song, S.L. Wang and X.Y. Zhou, Stability and Hopf bifurcation for a viral infection model with delayed non-lytic immune response , J. Appl. Math. and Computing 33 (2010), 251-265. https://doi.org/10.1007/s12190-009-0285-y
  14. R.V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells, Math. Biosci. 165(2000), 27-39. https://doi.org/10.1016/S0025-5564(00)00006-7
  15. P.W. Nelson and A.S. Perelson, Mathematical analysis of a delay differential equation models of HIV-1 infection, Math. Biosci. 179 (2002), 73-94. https://doi.org/10.1016/S0025-5564(02)00099-8
  16. J. Tam, Delay effect in a model for virus replication, IMA J. Math. Appl. Med. Biol. 16 (1999), 29-37. https://doi.org/10.1093/imammb/16.1.29
  17. X.Y. Song and S.H. Cheng, A delay-differential equation model of HIV infection of CD4+ T-cells, J. Koreal Math. Soc. 42 (2005), 1071-1086. https://doi.org/10.4134/JKMS.2005.42.5.1071
  18. E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal. 33 (2002), 1144-1165. https://doi.org/10.1137/S0036141000376086
  19. B.D. Hassard, N.D. Kazariniff and Y.H.Wan, Theory and Application of Hopf Bifurcation, London Math. Society Lecture, Note Series, 41, Cambridge University Press, 1981.
  20. N. Buric, M. Mudrinic and N. Vasovic, Time delay in a basic model of the immune re- sponse, Chaos Solitons Fractals 12 (2001), 483-489. https://doi.org/10.1016/S0960-0779(99)00205-2
  21. A.A. Canabarro, I.M. Gleria and M.L. Lyra, Periodic solutions and chaos in a non-linear model for the delayed cellular immune response, Phys. A 342 (2004), 234-241. https://doi.org/10.1016/j.physa.2004.04.083
  22. J. Hale and S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993.