DOI QR코드

DOI QR Code

학교수학 관점에서 살펴본 로그의 역사적 배경과 교수-학습 방법에 대한 고찰

The Analysis of the Way of Teaching and Learning Logarithms with a Historical Background in High School Mathematics

  • 투고 : 2011.08.08
  • 심사 : 2011.09.23
  • 발행 : 2011.09.30

초록

본 연구는 고등학교 수학에서 지도되고 있는 로그의 교수-학습 방법에 대한 새로운 관점과 방법을 고찰해보고 이를 통해 학교수학의 로그 지도에 대한 시사점을 제시하는데 목적이 있다. 이를 위하여 로그의 역사적 배경을 John Napier, 17세기 과학에 대한 로그의 영향, 그리고 로그계산자와 로그계산 방법을 중심으로 살펴보았다. 이런 배경과 함께 로그의 교수-학습 방법에 대한 고찰에서는 함수 개념을 이용한 로그의 도입, 상용로그를 이용한 로그계산, 밑의 변환 공식에 대해서 고찰하였다. 이런 역사적, 교수방법적 고찰을 통하여 학교수학에서 로그 지도에 대한 여섯 가지 시사점을 제시하였다.

The purpose of this paper is to analyze the way of teaching and learning logarithm in high school mathematics and provide practical suggestions for teaching logarithms. For such purpose, it reviewed John Napier's life and his ideas, the effect of logarithms on seventeenth century science, and a logarithmic scale and its methods of calculation. With this reviews, introduction of logarithms with function concept, logarithmic calculation with common logarithms, and the formula of converting to other logarithmic bases were reviewed for finding a new perspective of teaching and learning logarithms in high school mathematics. Through such historical and pedagogical reviews, this paper presented practical suggestions and comments about the way of teaching and learning logarithms in high school mathematics.

키워드

참고문헌

  1. 양승갑․윤갑진․신준국․양경식․주정오․성덕현 외 (2010). 고등학교 수학 I . 서울: 금성출판사.
  2. 이동원․유병훈․김훈․안경호․박미화․정지연 외 (2010). 고등학교 수학 I . 서울: 법문사.
  3. 이준열․최부림․김동재․서정인․전용주․김홍섭 (2010). 고등학교 수학 I . 서울: 천재교육.
  4. Brown, S. I., & Walter, M. I. (2005). The art of problem posing(3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.
  5. Copeland, T. (1992). Maths and the historial environment. English Heritage.
  6. Edwards, C. H. (1979). The historical development of the calculus. Springer Verlag.
  7. Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert(Ed.), Conceptual and procedural knowledge: The case of mathematics(pp. 1-27). Hillsdale, NJ: Erlbau.
  8. Hull, T. H., Balka, D. S., & Miles, R. H. (2011). Visible thinking in the K-8 mathematics classroom. Reston, VA: National Council of Teachers of Mathematics.
  9. Kelles, L. M., Kern, W., & Bland, J. R. (1943). The Log-Log duplex slide rule: A manual. Keuffell & Esser Co.
  10. Land, F. (1963). The language of mathematics. Garden City, NY: Doubleday & Company.
  11. Nardi, E., Jaworski, B., & Hegedus, S. (2005). A spectrum of pedagogical awareness for undergraduate mathematics: From "tricks" to "techniques." Journal for Research in Mathematics Eduction, 36(4), 284-316.
  12. National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: Author.
  13. Piaget, J. (1950). The psychology of intelligence. London: Routledge & Kegan Paul.
  14. Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 36(5), 404-411.
  15. von Galsersfeld, E.(1995). Radical constructivism: A way of knowing and learning. London: The Falmer Press.
  16. Web Site http://www-groups.dcs.st-and.ac.uk/-history/index.html (History of Mathematics at St Andrew's University)