DOI QR코드

DOI QR Code

매체유동층에서 미세 고분자의 건조특성

Drying Characteristics of Fine Polymers in an Inert Medium Fluidized Bed

  • 김옥신 (성균관대학교 화학공학부) ;
  • 이동현 (성균관대학교 화학공학부)
  • Kim, Og-Sin (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Lee, Dong-Hyun (Department of Chemical Engineering, Sungkyunkwan University)
  • 투고 : 2011.07.25
  • 심사 : 2011.08.29
  • 발행 : 2011.09.30

초록

직경 0.15 m, 높이 1.0 m인 매체유동층 건조기 내에서 유입 열풍유속(0.26~0.31 m/s), 유입 열풍온도(315~353 K) 및 미세 고분자입자와 매체입자의 질량비(0.1~0.4)에 따른 미세 고분자의 건조속도에 관한 영향을 조사하였다. 건조에 사용된 미세 고분자는 평균입경이 20 ${\mu}m$인 가교 PMMA beads로써 Geldart group C 입자이고, 매체입자는 Group B인 직경 590 ${\mu}m$인 glass beads를 이용하였다. 건조속도는 유입열풍유속 및 유입열풍온도에 따라 증가하였고, 미세 고분자와 매체입자의 질량비에 따라 감소하였다. 건조된 미세 고분자(PMMA)의 입도분포형태는 단일분포를 나타내었다.

The effects of inlet gas velocity (0.26-0.31 m/s), inlet gas temperature (315-353 K) and the mass ratio (0.1-0.4) of fine polymer (crosslinked poly methyl methacrylate beads) to inert medium particles on the drying rate of fine polymer in a 0.15 m-ID ${\times}$ 1.0 m-high inert medium fluidized bed dryer have been investigated. Crosslinked PMMA beads of 20 ${\mu}m$ (group C) were used as fine polymer, and glass beads of 590 ${\mu}m$ (group B) were used as the inert medium. The drying rate increases with increasing inlet gas temperature and velocity. However, the drying rate decreases slightly as the mass ratio of fine polymer to inert medium particles increases. The particle size distribution of dried fine polymers was mono distribution.

키워드

참고문헌

  1. Nakagawa, N., Ohsawa, K., Takarada, T., and Kato, K., "Continuous Drying of a Fine Particle-water Slurry in a Powderparticle Fluidized Bed," J. of Chem. Eng. Japan, 25, 495-501 (1992). https://doi.org/10.1252/jcej.25.495
  2. Palancz, B., "A Mathematical Model for Continuous Fluidized Bed Drying," Chem. Eng Sci., 38(7), 1045-1059 (1983). https://doi.org/10.1016/0009-2509(83)80026-8
  3. Geldart, D., "The Effect of Particle Size and Size Distribution on the Behavior of Gas-fluidized Beds," Powder Technol., 6(4), 201-215 (1972). https://doi.org/10.1016/0032-5910(72)83014-6
  4. Geldart, D., "Challenges in Fluidized Bed Technology," AIChE Symp. Ser., 85(270), 111-121 (1989).
  5. Land, C. M. van't, "Selection of Industrial Dryers," Chem. Eng., March, 53-61 (1984).
  6. Jun, K.-S., Hwang, E.-J., and Kim, H.-J., "A Study on Drying and Carbonization of Organic Sludge from Sewage Plant and Petrochemical Industries for Energy and Resources Recovery," Clean Technology, 15(3), 154-164 (2009).
  7. Jariwara, S. L., and Hoelscher, H. E., "Model for Oxidative Thermal Decomposition of Starch in Fluidized Reactor," Ind. Eng. Chem., 9, 278 (1970) https://doi.org/10.1021/i260034a019
  8. Lee, D. H., and Kim, S. D., "Drying Characteristics of Starch in an Inert Medium Fluidized Bed," Chem. Eng. Technol., 16, 263-269 (1993). https://doi.org/10.1002/ceat.270160409
  9. Lee, D. H., and Kim, S. D., "Drying Characteristics of PVC Resin in an Inert Medium Fluidized Bed," HWAHAK KONGHAK, 32(3), 463-468 (1994).
  10. Lee, D. H., and Kim, S. D., "A Mathematical Model for Batch Drying in An Inert Medium Fluidized Bed," Chem. Enging. Technl., 22, 443-450 (1999). https://doi.org/10.1002/(SICI)1521-4125(199905)22:5<443::AID-CEAT443>3.0.CO;2-L
  11. Schlunder, E.-U., "Drying '85 (Toei, R., Mujumdar, A.S., EDS), 75-83 (1985).
  12. Chandran, A. N., Rao, S. S., and Varma, Y. B. G., "Fluidized Bed Drying of Solids," AIChE J., 36(1), 29-38 (1990). https://doi.org/10.1002/aic.690360106