DOI QR코드

DOI QR Code

Carbon Dioxide-reducible Biodegradable Polymers

이산화탄소 저감형 생분해성 고분자

  • Lee, Won-Ki (Department of Polymer Engineering, Pukyong National University)
  • Received : 2011.06.09
  • Accepted : 2011.09.05
  • Published : 2011.09.30

Abstract

Natural polymers, biopolymers, and synthetic polymers based on renewable resources are the basis for the 21th portfolio of sustainable and eco-friendly plastics but high-volume consumable plastics continue to be dominated by nondegradable petroleum-based materials. Three factors have recently made biodegradable polymers economically attractive: (i) rising costs of petroleum production resulting from the depletion of the most easily accessible reserves, (ii) environmental and economic concerns associated with waste plastics, and (iii) emissions of carbon dioxide from preparation of petroleum-based materials. These pressures have driven commercial applications based on biodegradable polymers which are related to reduction of carbon dioxide in processing, such poly(hydroxy alkanoate) and poly (lactide). Since initial degradation of these polymers leads to catastrophic mechanical failure, it is necessary to control the rate of initial degradation for commercial applications. In this article, we have a critic review on the recent progress of polymer modification for the control of degradation.

재생 가능한 자원으로 만들어지는 천연고분자, 바이오 고분자 및 합성고분자들은 지속가능하며 환경 친화적인 플라스틱으로 21세기 화두가 되고 있으나 많은 양의 썩지 않는 석유화학 유래 플라스틱이 사용되고 있다. 최근 들어 세 가지 관점에서 생분해성 고분자들이 많은 관심을 받고 있다: 1. 채취하기 쉬운 자원의 고갈에 따른 석유제품의 가격상승, 2. 폐플라스틱에 대한 환경 및 경제적인 관심, 3. 석유화학 유래 재료의 제조에 따른 이산화탄소배출. 이러한 관점에서 제조공정상에서 이산화탄소를 저감할 수 있는 poly(hydroxy alkanoate)나 poly(lactide)와 같은 생분해성 고분자에 대한 상업적 응용에 대한 관심이 고조되고 있다. 이들 고분자들은 초기분해가 진행됨에 따라 급격히 기계적 물성을 상실하기 때문에 상업적 응용을 위하여서는 분해거동이 중요하다. 본 총설에서는 초기분해속도의 조절을 위한 고분자 개질에 대한 최근의 연구동향을 살펴보았다.

Keywords

References

  1. http://www.eia.doe.gov/iea
  2. http://www.ippak.or.kr/board_upload/12971323530.docx? PHPSESSID=01762243150e6938b66777cd7f20f85b
  3. http://www.k-online.de
  4. Scott, G., and Gilead, D., Degradable Polymers, Chapman & Hall, 1995, pp. 1-42.
  5. Buchanan F., Degradable Rate of Bioresorbable Materials, CRC press, 2008, pp. 1-18.
  6. http://www.kwaste.or.kr
  7. Bioplastics Market Trends and U.S.& E.U. Outlook, Fuji- Keizai U.S.A. Inc (2007).
  8. Lemoigne, M., "Produit de Deshydratation et de Polymerisation de Lacide $\beta$-oxybutyrate," Bull. Soc. Chim. Biol., 8, 770-786 (1926).
  9. Sudesh, K., Abe, H., and Doi, Y., "Synthesis, Structure, and Properties of Polyhydroxyalkanoates: Biological Polyesters," Prog. Polym. Sci., 25, 1503-1555 (2000). https://doi.org/10.1016/S0079-6700(00)00035-6
  10. Scott, D., Degradable polymer, 2nd ed., Kluwer Academic Publishers, Dordrecht, 2002, pp. 71-133.
  11. Auras R., Lim, L. T., Selke S., and Tsuji, H., Poly(lactic acid) Degradable polymer: Synthesis, Structure, Properties, Processing, and Applications, John Wiley & Sons, New Jursey, 2010, pp. 3-18 and 227-272.
  12. http://www.hongjee.com/sub2_2.html
  13. http://www.lgeri.com/industry/chemical/listWebZine.asp? grouping=01030300&cPage=1&srchtype=1&srchword=%uBC 14%uC774%uC624%uD3F4
  14. http://worldcentric.org
  15. Lee, W. K., Iwata, T., Abe, H., and Doi, Y., "Studies on the Enzymatic Hydrolysis of Solution-grown Poly[(R)-3-hydroxybutyrate] Crystals; Defects in Crystals," Macromolecules, 33(26), 9535-9541 (2000). https://doi.org/10.1021/ma001016c
  16. Lee, W. K., and Gardella, J. A., "Hydrolytic Kinetics of Biodegradable Polyester Monolayers," Langmuir, 16(7), 3401-3406 (2000). https://doi.org/10.1021/la990800r
  17. Koyama, N., and Doi, Y., "Effects of Solid-State Structures on the Enzymatic Degradability of Bacterial Poly(hydroxyalkanoic acids)," Macromolecules, 30(4), 826-832 (1997). https://doi.org/10.1021/ma961195r
  18. Fredericks, R. J., Melveger, A, J., and Dolegiewtz, L. J., "Morphological and Structural Changes in a Copolymer of Glycolide and Lactide Occurring as a Result of Hydrolysis," J. Polym. Sci.: Polym. Phys. Ed., 22(1), 57-66 (1984). https://doi.org/10.1002/pol.1984.180220106
  19. Abe, H., Doi, Y., Aoki, H., and Akehata, T., "Solid-State Structure and Enzymatic Degradabilities for Melt-Crtstallized Films of Copolymers of (R)-3-Hydroxybutric Acid with Different Hydroxyalkanoic Acids," Macromolecules, 31(6), 1791- 1797 (1998). https://doi.org/10.1021/ma971559v
  20. Abe, H., Kikkawa, Y., Aoki, H., Akehata, T., Iwata, T., and Doi, Y., "Crystallization Behavior and Thermal Properties of Melt-Crtstallized Poly([(3)-Hydroxybutyric acid-co-6-hydroxyhexanoic acid] Films," Int. J. Biol. Macromol., 25, 177-183 (1999). https://doi.org/10.1016/S0141-8130(99)00032-X
  21. Hocking, P. J., Revol, J. F., and Marchessault, R. H., "Single Crystals and Crystalline Morphology of Synthetic Racemic Poly($\beta$-hydrobutyrate), Macromolecules," 29(7), 2467-2471 (1996). https://doi.org/10.1021/ma951360n
  22. Hocking, P. J., Marchessault, R. H., Timmins, M. R., Lenz, R. W., and Fuller, R. C., "Enzymatic Degradation of Single Crystals of Bacterial and Synthetic Poly($\beta$-hydrobutyrate)," Macromolecules, 29(7), 2472-2478 (1996). https://doi.org/10.1021/ma951361f
  23. Iwata, T., Doi, Y., Kasuya, K., and Inoue, Y., "Visualization of Enzymatic Degradation of Poly[(R)-3-hydroxybutyrate] Single Crystals by an Extracellular PHB Depolymerase," Macromolecules, 30(4), 833-839 (1997). https://doi.org/10.1021/ma961352m
  24. Iwata, T., and Doi, Y., "Crystal Structure and Biodegradation of Aliphatic Polyester Crystals," Macromol. Chem. Phys., 200(11), 2429-2442 (1999). https://doi.org/10.1002/(SICI)1521-3935(19991101)200:11<2429::AID-MACP2429>3.0.CO;2-#
  25. Iwata, T., Shiromo, M., and Doi, Y., "Surface Structures of Poly[(R)-3-hydroxybutyrate] and its Copolymer Single Crystals Before and After Enzymatic Degradation with an Extracellular PHB Depolymerase," Macromol. Chem. Phys., 203 (10-11), 1309-1316 (2002) https://doi.org/10.1002/1521-3935(200207)203:10/11<1309::AID-MACP1309>3.0.CO;2-P
  26. Lee, W. K., Iwata, T., Abe, H., and Doi, Y., "Studies on the Enzymatic Hydrolysis of Solution-Grown Poly[(R)-3-hydroxybutyrate] Crystals; Defects in Crystals," Macromolecules, 33 (26), 9535-9541 (2000). https://doi.org/10.1021/ma001016c
  27. Min, S. K., Moon, M. J., and Lee, W. K., "Degradation Behaviors of Poly(l-lactide) using Model Systems," J. Environ. Sci., 15(2), 177-183 (2006).
  28. Iwata, T., and Doi, Y., "Morphology and Enzymatic Degradation of Poly(L-lactic acid) Single Crystals," Macromolecules, 31(8), 2461-2467 (1998). https://doi.org/10.1021/ma980008h
  29. Iwata, T., and Doi, Y., "Alkaline Hydrolysis of Solution-Grown Poly(L-lactic acid) Single Crystals," SEN'I GAKKAISHI, 57(6), 172-176 (2001). https://doi.org/10.2115/fiber.57.172
  30. Thissen, H., Surface Modification of Biodegradable Polymers, The PBM Series, Vol. 2, In Biodegradable Polymers, (Ed.) R. Arshady, Citus Books, London, 2006, pp. 175-210.
  31. Kim, J. H., "Photodegradability of Blends of Polystyrene and Vinyl Ketone Polymers," Clean Technology, 4(2), 54-60 (1998).
  32. Ha, C. S., and Cho, W. J., "Miscibility, Properties and Biodegradability of Microbial Polyester Containing Blends," Prog. Polym. Sci., 27, 759-809 (2002).
  33. Abou-Aiad, T. H., "Morphology and Dielectric Properties of Polyhydroxybutyrate (PHB)/Poly(methylmethacrylate) Blends with Some Antimicrobial Applications," Polym. Plast. Technol. Eng., 46(4), 435-439 (2007). https://doi.org/10.1080/03602550701244659
  34. Lee, W. K., Cho, W. J., Ha, C. S., Takahara, A., and Kajiyama, T., "Surface Enrichment of the Solution-cast Poly(methyl methacrylate)/ Poly(vinyl acetate) Blends," Polymer, 36(6), 1229- 1234 (1995). https://doi.org/10.1016/0032-3861(95)93925-C
  35. Lee, W. K., Ryou, J. H., and Ha, C. S., "Retardation of Enzymic Degradation of Microbial Polyesters using Surface Chemistry: Effect of Addition of Nondegradable Polymers," Surf. Sci., 542, 235-243 (2003). https://doi.org/10.1016/S0039-6028(03)00981-6
  36. Chu, C. C., "Degradation Phenomena of Two Linear Aliphatic Polyester Fibers used in Medicine and Surgery," Polymer, 26(3), 591-594 (1985). https://doi.org/10.1016/0032-3861(85)90160-0
  37. Ryou, J. H., Ha, C. S., Kim, J. W., and Lee, W. K., "Control of Enzymic Degradation of Microbial Polyesters by Plasma Modification," Macromol. Biosci., 3(1), 44-50 (2003). https://doi.org/10.1002/mabi.200390004
  38. Ryou, J. H., "Control of Enzymatic Degradation of Microbial Polyesters," Ph.D. Dissertation, Pusan National University, Busan, 2003.
  39. Auras, R., Lim, L. T., Selke, S.E.M., and Tsuji, H., Poly(lactic acid), Wiely, New Jersey, 2010, pp. 59-66.
  40. Ikada, Y., Jamshidi, K., Tsuji, H., and Hyon, S. H., "Stereocomplex Formation between Enantiomeric Poly(lactides)," Macromolecules, 20(4), 904-906 (1987). https://doi.org/10.1021/ma00170a034
  41. MacDonald, R. T., McCarthy, St. P., and Gross, R. A., "Enzymatic Degradability of Poly(lactide): Effects of Chain Stereochemistry and Material Crystallinity," Macromolecules, 29(23), 7356-7361 (1996). https://doi.org/10.1021/ma960513j
  42. Park, C. Y., Choi, Y. H., and Lee, W. K., "Study on Degradation Rates of Biodegradable Polymers by Stereochemistry," J. Environ. Sci., 18(7), 797-802 (2009).
  43. Lee, W. K., Iwata, T., and Gardella, J. A., "Hydrolytic Behavior of Enantiomeric Poly(lactide)-mixed Monolayer Films at the Air/water Interface: Stereocomplexation Effects," Langmuir, 21(24), 11180-11184 (2005). https://doi.org/10.1021/la051137b