Comparison of 3D TOF MRA with Contrast Enhanced MRA in Intracranial Atherosclerotic Occlusive Disease

뇌동맥 경화증 진단에서 삼차원 비약시간기법을 이용한 자기공명 혈관조영술과 조영증강 자기공명혈관촬영술의 비교 연구

  • Choi, Jin-Ha (Department of Radiology and Medical Research Institute, School of Medicine, Ewha Womans University) ;
  • Lim, Soo-Mee (Department of Radiology and Medical Research Institute, School of Medicine, Ewha Womans University) ;
  • Kim, Yoo-Kyung (Department of Radiology and Medical Research Institute, School of Medicine, Ewha Womans University)
  • 최진하 (이화여자대학교 의학전문대학원 영상의학과) ;
  • 임수미 (이화여자대학교 의학전문대학원 영상의학과) ;
  • 김유경 (이화여자대학교 의학전문대학원 영상의학과)
  • Published : 2011.03.01

Abstract

Purpose: We compared diagnostic performance of 3D Time of flight MRA with contrast-enhanced MRA to detect and quantify intracranial atherosclerotic occlusive disease. Materials and Methods: From April 2007 to December 2009, we enrolled 95 patients with clinically suspected intracranial atherosclerotic steno-occlusive disease who had undergone 3D TOF-MRA and CE MRA at 1.5T or 3T with DSA. Two radiologists analyzed the post-processed images using a maximum intensity projection. Intracranial vessels were categorized as distal internal carotid artery, middle cerebral artery or vertebrobasillar artery. We graded the degree of stenosis and assigned subjects to one of three groups: low grade occlusion (<50%), high grade occlusion (50-99%) and complete occlusion. Using the McNemar test, we compared the results of CE MRA with those of 3D TOF for detecting >50% stenosis using DSA as a reference standard. Results: CE MRA had 94.2% sensitivity, 88.1% specificity, 51% positive predictive value, 99.1% negative predictive value and 88.8% diagnostic accuracy for detecting >50% stenosis; In contrast, 3D TOF-MRA showed 94.2% sensitivity, 91.6.1% specificity, 59.8% positive predictive value, 99.1% negative predictive value and 91.9% diagnostic accuracy. Sensitivity and specificity of CE MRA were not significantly different than sensitivity and specificity of 3D TOF MRA (p >0.05). Conclusion: 3D TOF-MRA provides comparable diagnostic performance with CE-MRA for diagnosis intracranial atherosclerotic disease.

목적: 뇌혈관 협착 및 폐색 질환 진단에 삼차원 비약시간 자기공명혈관촬영술(3D Time of flight Magnetic Resonance Angiograhpy, 이하 3D TOF MRA) 과 조영증강 자기공명혈관촬영술(Contrast enhanced MRA, 이하 CE MRA)의 진단적 가치를 비교하고자 하였다. 대상과 방법: 2007년 4월부터 2009년 12월까지 뇌혈관 협착 증상이 있거나 의심되어 뇌자기공명혈관촬영술을 시행하고 고식적 혈관조영술을 함께 시행한 95명 환자를 대상으로 하였다. 영상분석은 두 명의 영상의학과 의사가 최대강도투사기법으로 재구성한 3D TOF MRA와 CE MRA 영상을 분석하였다. 두개강 내 혈관은 원위부 내경동맥, 중대뇌동맥, 척추바닥뇌동맥으로 나누어 혈관 직경이 50%까지 좁아져 있으면 저등급 협착, 50% 이상 99%까지 고등급 협착 그리고 폐색 3단계로 기록하였다. 이후 혈관조영술을 표준지표로 설정하고 McNemar test를 이용하여 50% 이상의 고등급 및 폐색 진단에서 3D TOF MRA와 CE MRA의 민감도(sensitivity)와 특이도(specificity)를 비교하였다. 결과: 50% 이상의 고등급 및 폐색 진단에서 CE MRA의 민감도, 특이도, 양성예측도, 음성예측도, 정확도는 94.2%, 88.1%, 51%, 99.1%, 88.8%이며, 3D TOF MRA는 94.2%, 91.6%, 59.8%, 99.1%, 91.9%였다. CE MRA와 3DTOF MRA의 민감도와 특이도는 통계적으로 유의한 차이를 보이지 않았다(p > 0.05). 결론: 뇌혈관 협착이나 폐색의 진단에서 3D TOF MRA는 CE MRA와 대등할 만한 진단적 성취를 제시하였다.

Keywords

References

  1. Sacco RL, Kargman DE, Gu Q, Zamanillo MC. Race-ethnicity and determinants of intracranial atherosclerotic cerebral infarction. The northen manhattan stroke study. Stroke 1995;26:14-20 https://doi.org/10.1161/01.STR.26.1.14
  2. Chimowitz MI, Kokkinos J, Strong J, Brown MB, Levine SR, Silliman S, et al. The warfarin-aspirin symptomatic intracranial disease study. Neurology 1995;45:1488-1493 https://doi.org/10.1212/WNL.45.8.1488
  3. Yoon W, Seo JJ, Cho KH, Kim MK, Kim BC, Park MS. Symptomatic middle cerebral artery stenosis treated with intracranial angioplasty: experience in 32 patients. Radiology 2005;237:620-626 https://doi.org/10.1148/radiol.2372041620
  4. Suh DC, Kim SJ, Lee DH, Kim W, Choi CG, Lee JH, et al. Outcome of endovascular treatment in symptomatic intracranial vascular stenosis. Korean J Radiol 2005;6:1-7 https://doi.org/10.3348/kjr.2005.6.1.1
  5. 장남규, 서정진, 정태웅, 정광우, 김재규, 강형근, 등. 뇌경색환자에서 Enhanced 3D-TOF 자기공명혈관조영술: 고식적 혈관조영술과의 비교. 대한방사선의학회지 2000;42:575-583
  6. Anzalone N, Scotti R, Iadanza A. MR angiography of the carotid arteries and intracranial circulation: advantage of a high relaxivity contrast agent. Neuroradiology 2006;48:9-17 https://doi.org/10.1007/s00234-006-1464-2
  7. Sadikin C, Teng MM, Chen TY, Luo CB, Chang FC, Lirng JF, et al. The current role of 1.5T non-contrast 3D time-of-flight magnetic resonance angiography to detect intracranial steno-occlusive disease. J Formos Med Assoc 2007;106:691-699 https://doi.org/10.1016/S0929-6646(08)60030-3
  8. Choi HS, Kim DI, Kim DJ, Kim J, Kim ES, Lee SK. Accuracy of 3T MR angiography in vertebral artery stenosis and coincidence with other cerebrovascular stenoses. Neuororadiology 2010;52:893-898 https://doi.org/10.1007/s00234-010-0655-z
  9. Babiarz LS, Romero JM, Murphy EK, Brobeck B, Schaefer PW, Gonza'lez RG, et al. Contrast-enhanced MR angiography is not more accurate than unenhanced 2D time-of-flight MR angiography for determining > or = 70% internal carotid artery stenosis. AJNR Am J Neuroradiol 2009;30:761-768 https://doi.org/10.3174/ajnr.A1464
  10. Oelerich M, Lentschig MG, Zunker P, Reimer P, Rummeny EJ, Schuierer G. Intracranial vascular stenosis and occlusion: comparison of 3D time-of-flight and 3D phase-contrast MR angiography. Neuroradiology 1998;40:567-573 https://doi.org/10.1007/s002340050645
  11. Choi CG, Lee DH, Lee JH, Pyun HW, Kang DW, Kwon SU, et al. Detection of intracranial atherosclerotic steno-occlusive disease with 3D time-of-flight magnetic resonance angiography with sensitivity encoding at 3T. AJNR Am J Neuroradiol 2007;28:439-446
  12. Bash S, Villablanca JP, Jahan R, Duckwiler G, Tillis M, Kidwell C, et al. Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am J Neuroradiol 2005;26:1012-1021
  13. Stock KW, Radue EW, Jacob AL, Bao XS, Steinbrich W. Intracranial arteries: prospective blinded comparative study of MR angiography and DSA in 50 patients. Radiology 1995;195:451-456 https://doi.org/10.1148/radiology.195.2.7724765
  14. Atkinson D, Brant-Zawadzki M, Gillan G, Purdy D, Laub G. Improved MR angiography: magnetization transfer suppression with variable flip angle excitation and increased resolution. Radiology 1994;190:890-894 https://doi.org/10.1148/radiology.190.3.8115646
  15. 대한자기공명의과학회. 자기공명영상학. 서울: 일조각, 2008:194-210, 316-326
  16. Villablanca JP, Nael K, Habibi R, Nael A, Laub G, Finn JP. 3T contrast- enhanced magnetic resonance angiography for evaluation of the intracranial arteries: comparison with time-of-flight magnetic resonance angiography and multislice computed tomography angiography. Invest Radiology 2006;41:799-805 https://doi.org/10.1097/01.rli.0000242835.00032.f5
  17. Furst G, Hofer M, Steinmetz H, Kambergs J, Paselk C, Liebsch D, et al. Intracranial stenoocclusive disease: MR angiography with magnetization transfer and variable flip angle. AJNR Am J Neuroradiol 1996;17:1749-1757
  18. Korogi Y, Takahashi M, Nakagawa T, Mabuchi N, Watabe T, Shiokawa Y, et al. Intracranial vascular stenosis and occlusion: MR angiographic findings. AJNR Am J Neuroradiol 1997;18:135-143
  19. Heiserman JE, Drayer BP, Keller PJ, Fram EK. Intracranial vascular stenosis and occlusion: evaluation with three-dimensional timeof- flight MR angiography. Radiology 1992;185:667-673 https://doi.org/10.1148/radiology.185.3.1438743