THE GENERALIZED TRAPEZOIDAL FUZZY SETS

BongJu Lee* and Yong Sik Yun**

Abstract

We would like to generalize about trapezoidal fuzzy set and to calculate four operations based on the Zadeh's extension principle for two generalized trapezoidal fuzzy sets. And we roll up triangular fuzzy numbers and generalized triangular fuzzy sets into it. Since triangular fuzzy numbers and generalized triangular fuzzy sets are generalized trapezoidal fuzzy sets, we need no more the separate painstaking calculations of addition, subtraction, multiplication and division for two such kinds once the operations are done for generalized trapezoidal fuzzy sets.

1. Introduction

The purpose of this paper is to generalize the results of four operations for two generalized trapezoidal fuzzy sets. We use four operations, addition $A(+) B$, subtraction $A(-) B$, multiplication $A(\cdot) B$ and division $A(/) B$ for generalized trapezoidal fuzzy sets A and B. These operations for two fuzzy numbers $\left(A, \mu_{A}\right)$ and $\left(B, \mu_{B}\right)$ are defined in Definition 2.3 and based on the Zadeh's extension principle ([2], [3], [4]). Addition $A(+) B$ and subtraction $A(-) B$ become generalized trapezoidal fuzzy sets. However, multiplication $A(\cdot) B$ and division $A(/) B$ need not to be generalized trapezoidal fuzzy sets.

There are so many results of above four operations for two triangular fuzzy numbers and two generalized triangular fuzzy sets([1]). Since these fuzzy numbers and fuzzy sets are generalized trapezoidal fuzzy sets, we roll it up into the single concept of generalized trapezoidal fuzzy set. Thus we would like to show that we need no more the separate painstaking calculations of addition, subtraction, multiplication and division of

[^0]two such kinds once the operations are done for generalized trapezoidal fuzzy sets. And we provide some examples.

2. Preliminaries

Definition 2.1. A triangular fuzzy number is a fuzzy set $A=\left(a_{1}, a_{2}\right.$, a_{3}) having membership function

$$
\mu_{A}(x)=\left\{\begin{array}{cl}
0, & x<a_{1}, a_{3} \leq x \\
\frac{x-a_{1}}{a_{2}-a_{1}}, & a_{1} \leq x<a_{2} \\
\frac{a_{3}-x}{a_{3}-a_{2}}, & a_{2} \leq x<a_{3}
\end{array}\right.
$$

Definition 2.2. A generalized triangular fuzzy set is a symmetric fuzzy set $A=\left(a_{1}, c, a_{2}\right)$ having membership function

$$
\mu_{A}(x)=\left\{\begin{array}{cl}
0, & x<a_{1}, a_{2} \leq x \\
\frac{2 c\left(x-a_{1}\right)}{a_{2}-a_{1}}, & a_{1} \leq x<\frac{a_{1}+a_{2}}{2} \\
\frac{-2 c\left(x-a_{2}\right)}{a_{2}-a_{1}}, & \frac{a_{1}+a_{2}}{2} \leq x<a_{2}
\end{array}\right.
$$

Definition 2.3. The addition, subtraction, multiplication and division of two fuzzy sets A and B are defined as

1. Addition $A(+) B$:

$$
\mu_{A(+) B}(z)=\sup _{x+y=z} \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}, x \in A, y \in B
$$

2. Subtraction $A(-) B$:

$$
\mu_{A(+) B}(z)=\sup _{x-y=z} \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}, x \in A, y \in B
$$

3. Multiplication $A(\cdot) B$:

$$
\mu_{A(\cdot) B}(z)=\sup _{x y=z} \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}, x \in A, y \in B
$$

4. Division $A(/) B$:

$$
\mu_{A(\cdot) B}(z)=\sup _{\frac{x}{y}=z} \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}, x \in A, y \in B
$$

3. Generalized trapezoidal fuzzy set

Definition 3.1. A fuzzy set A having membership function

$$
\mu_{A}(x)=\left\{\begin{array}{cl}
0, & x<a_{1}, a_{4} \leq x \\
\frac{c\left(x-a_{1}\right)}{a_{2}-a_{1}}, & a_{1} \leq x<a_{2} \\
c, & a_{2} \leq x<a_{3} \\
\frac{c\left(a_{4}-x\right)}{a_{4}-a_{3}}, & a_{3} \leq x<a_{4}
\end{array}\right.
$$

where $a_{i} \in \mathbb{R}, i=1,2,3,4$ and $0<c<1$, is called a generalized trapezoidal fuzzy set and will be denoted by $A=\left(a_{1}, a_{2}, c, a_{3}, a_{4}\right)$.

REMARK 3.2. A triangular fuzzy number $A=\left(a_{1}, a_{2}, a_{3}\right)$ is just a special case of a generalized trapezoidal fuzzy set. In fact, $\left(a_{1}, a_{2}, a_{3}\right)=$ $\left(a_{1}, a_{2}, 1, a_{2}, a_{3}\right)$.

REmARK 3.3. A generalized triangular fuzzy set is also a special case of a generalized trapezoidal fuzzy set. In fact,

$$
A=\left(\left(a_{1}, c_{1}, a_{2}\right)\right)=\left(a_{1}, \frac{a_{1}+a_{2}}{2}, c_{1}, \frac{a_{1}+a_{2}}{2}, a_{2}\right)
$$

We generalize about four operations for two generalized trapezoidal fuzzy sets, A and B, in the following $3.1 \sim 3.4$. For that, let $A=$ $\left(a_{1}, a_{2}, m_{1}, a_{3}, a_{4}\right)$ and $B=\left(b_{1}, b_{2}, m_{2}, b_{3}, b_{4}\right)$, where $a_{i}, b_{i} \in \mathbb{R}, i=$ $1,2,3,4,0<m_{1} \leq m_{2}<1$ and $\mu_{B}(x) \geq m_{1}$ in $[p, r]$.

3.1. Addition

It is convenient to consider $\min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$ as a function of two variable.

Now

$$
\mu_{A(+) B}(z)=\sup _{x+y=z} \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}, x \in A, y \in B
$$

Therefore to find the value of this function we have to look at the values of $(x, y) \mapsto \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$ on the line $x+y=z$. In fugure 1 , we see that the maximum value of $\min \left\{\mu_{A}(x), \mu_{B}(x)\right\}$ on the curve $x+y=z$ occurs at the intersection point of the $x+y=z$ and the path joining the four points E, P, R and G.

Figure 1. Contour plot of $(x, y) \mapsto \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$ and $x+y=z$

Then

$$
\mu_{A(+) B}(z)=\left\{\begin{array}{cl}
0, & z<a_{1}+b_{1}, a_{4}+b_{4} \leq z \\
\psi_{1}(z), & a_{1}+b_{1} \leq z<a_{2}+p \\
\eta_{1}(z), & a_{2}+p \leq z<a_{3}+r \\
\zeta_{1}(z), & a_{3}+r \leq z<a_{4}+b_{4}
\end{array}\right.
$$

To find the expressions of the functions $\psi_{1}, \eta_{1}, \zeta_{1}$, we have to find y coordinates of the points P and R. The y-coordinate p of $P\left(a_{1}, p\right)$ is determined by

$$
m_{1}=m_{2} \cdot \frac{p-b_{1}}{b_{2}-b_{1}}
$$

Hence

$$
p=b_{1}+\left(b_{2}-b_{1}\right) \cdot \frac{m_{1}}{m_{2}}
$$

The y-coordinate r of $R\left(a_{3}, r\right)$ is determined by

$$
m_{1}=m_{2} \cdot \frac{b_{4}-r}{b_{4}-b_{3}}
$$

Hence

$$
r=b_{4}-\left(b_{4}-b_{3}\right) \cdot \frac{m_{1}}{m_{2}}
$$

Therefore

- $\psi_{1}(z)$ is determined by the intersection point of the line $x+y=z$ with the line joining the two points E and P :

$$
\left\{\begin{aligned}
x+y & =z \\
y-b_{1} & =\frac{p-b_{1}}{a_{2}-a_{1}}\left(x-a_{1}\right)
\end{aligned}\right.
$$

The x-coordinate of the intersection point is

$$
x_{E P}=\frac{z m_{2}\left(a_{2}-a_{1}\right)-m_{2} b_{1}\left(a_{2}-a_{1}\right)+m_{1} a_{1}\left(b_{2}-b_{1}\right)}{m_{2}\left(a_{2}-a_{1}\right)+m_{1}\left(b_{2}-b_{1}\right)}
$$

Hence

$$
\begin{aligned}
\psi_{1}(z) & =\mu_{A}\left(x_{E P}\right) \\
& =\frac{m_{1} m_{2}\left(z-a_{1}-b_{1}\right)}{m_{2}\left(a_{2}-a_{1}\right)+m_{1}\left(b_{2}-b_{1}\right)}
\end{aligned}
$$

- $\eta_{1}(z)$ is a constant function m_{1} on $\left[a_{2}+p, a_{3}+r\right]$ because $(x, y) \mapsto$ $\min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$ takes constant value m_{1} on the rectangle $P Q R S$.
- $\eta_{1}(z)$ is determined by the intersection point of the line $x+y=z$ with the line joining the two points R and G :

$$
\left\{\begin{array}{l}
x+y=z \\
y-r=\frac{b_{4}-r}{a_{4}-a_{3}}\left(x-a_{3}\right)
\end{array}\right.
$$

The x-coordinate of the intersection point is

$$
x_{R G}=\frac{z m_{2}\left(a_{4}-a_{3}\right)-m_{2} b_{4}\left(a_{4}-a_{3}\right)+m_{1} a_{4}\left(b_{4}-b_{3}\right)}{m_{2}\left(a_{4}-a_{3}\right)+m_{1}\left(b_{4}-b_{3}\right)}
$$

Hence

$$
\begin{aligned}
\zeta_{1}(z) & =\mu_{A}\left(x_{R G}\right) \\
& =\frac{m_{1} m_{2}\left(a_{4}+b_{4}-z\right)}{m_{2}\left(a_{4}-a_{3}\right)+m_{1}\left(b_{4}-b_{3}\right)}
\end{aligned}
$$

In summary, the membership function $\mu_{A(+) B}(z)$ is

$$
\left\{\begin{array}{cl}
0, & z<a_{1}+b_{1}, a_{4}+b_{4} \leq z \\
\frac{m_{1} m_{2}\left(z-a_{1}-b_{1}\right)}{m_{2}\left(a_{2}-a_{1}\right)+m_{1}\left(b_{2}-b_{1}\right)}, & a_{1}+b_{1} \leq z<a_{2}+b_{1}+\left(b_{2}-b_{1}\right) \cdot \frac{m_{1}}{m_{2}} \\
m_{1}, & a_{2}+b_{1}+\left(b_{2}-b_{1}\right) \cdot \frac{m_{1}}{m_{2}} \leq z \\
& <a_{3}+b_{4}-\left(b_{4}-b_{3}\right) \cdot \frac{m_{1}}{m_{2}} \\
& \\
\frac{m_{1} m_{2}\left(a_{4}+b_{4}-z\right)}{m_{2}\left(a_{4}-a_{3}\right)+m_{1}\left(b_{4}-b_{3}\right)}, & a_{3}+b_{4}-\left(b_{4}-b_{3}\right) \cdot \frac{m_{1}}{m_{2}} \leq z<a_{4}+b_{4}
\end{array}\right.
$$

i.e. $A(+) B$ is a generalized trapezoidal fuzzy set.

3.2. Subtraction

In fugure 2 , we see that the maximum value of $\min \left\{\mu_{A}(x), \mu_{B}(x)\right\}$ on the curve $x-y=z$ occurs at the intersection point of the $x-y=z$ and the path joining the four points H, S, Q and F.

Figure 2. Contour plot of $(x, y) \mapsto \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$ and $x-y=z$

Then

$$
\mu_{A(-) B}(z)=\left\{\begin{array}{cl}
0, & z<a_{1}-b_{4}, a_{4}-b_{1} \leq z \\
\psi_{2}(z), & a_{1}-b_{4} \leq z<a_{2}-r \\
\eta_{2}(z), & a_{2}-r \leq z<a_{3}-p \\
\zeta_{2}(z), & a_{3}-p \leq z<a_{4}-b_{1}
\end{array}\right.
$$

Therefore

- $\psi_{2}(z)$ is determined by the intersection point of the line $x-y=z$ with the line joining the two points H and S :

$$
\begin{cases}x-y & =z \\ y-b_{4} & =\frac{r-b_{4}}{a_{2}-a_{1}}\left(x-a_{1}\right)\end{cases}
$$

The y-coordinate of the intersection point is

$$
y_{H S}=-\frac{z m_{1}\left(b_{4}-b_{3}\right)-m_{1} a_{1}\left(b_{4}-b_{3}\right)-m_{2} b_{4}\left(a_{2}-a_{1}\right)}{m_{2}\left(a_{2}-a_{1}\right)+m_{1}\left(b_{4}-b_{3}\right)}
$$

Hence

$$
\begin{aligned}
\psi_{2}(z) & =\mu_{B}\left(y_{H S}\right) \\
& =\frac{m_{1} m_{2}\left(z+b_{4}-a_{1}\right)}{m_{2}\left(a_{2}-a_{1}\right)+m_{1}\left(b_{4}-b_{3}\right)}
\end{aligned}
$$

- $\eta_{2}(z)$ is a constant function m_{1} on $\left[a_{2}-r, a_{3}-p\right]$ because $(x, y) \mapsto$ $\min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$ takes constant value m_{1} on the rectangle $P Q R S$.
- $\eta_{2}(z)$ is determined by the intersection point of the line $x-y=z$ with the line joining the two points Q and F :

$$
\begin{cases}x-y & =z \\ y-p & =\frac{b_{1}-p}{a_{4}-a_{3}}\left(x-a_{3}\right)\end{cases}
$$

The y-coordinate of the intersection point is

$$
y_{Q F}=\frac{z m_{2}\left(a_{4}-a_{3}\right)-m_{2} b_{4}\left(a_{4}-a_{3}\right)+m_{1} a_{4}\left(b_{4}-b_{3}\right)}{m_{2}\left(a_{4}-a_{3}\right)+m_{1}\left(b_{4}-b_{3}\right)}
$$

Hence

$$
\begin{aligned}
\zeta_{2}(z) & =\mu_{B}\left(y_{Q F}\right) \\
& =\frac{m_{1} m_{2}\left(a_{4}-b_{1}-z\right)}{m_{2}\left(a_{4}-a_{3}\right)+m_{1}\left(b_{2}-b_{1}\right)}
\end{aligned}
$$

In summary, the membership function $\mu_{A(-) B}(z)$ is

$$
\left\{\begin{array}{cl}
0, & z<a_{1}-b_{4}, a_{4}-b_{1} \leq z \\
\frac{m_{1} m_{2}\left(z+b_{4}-a_{1}\right)}{m_{2}\left(a_{2}-a_{1}\right)+m_{1}\left(b_{4}-b_{3}\right)}, & a_{1}-b_{4} \leq z<a_{2}-\left(b_{4}-\left(b_{4}-b_{3}\right) \cdot \frac{m_{1}}{m_{2}}\right) \\
m_{1}, & a_{2}-\left(b_{4}-\left(b_{4}-b_{3}\right) \cdot \frac{m_{1}}{m_{2}}\right) \leq z \\
& \quad<a_{3}-\left(b_{1}+\left(b_{2}-b_{1}\right) \cdot \frac{m_{1}}{m_{2}}\right) \\
& \\
\frac{m_{1} m_{2}\left(a_{4}-b_{1}-z\right)}{m_{2}\left(a_{4}-a_{3}\right)+m_{1}\left(b_{2}-b_{1}\right)}, & a_{3}-\left(b_{1}+\left(b_{2}-b_{1}\right) \cdot \frac{m_{1}}{m_{2}}\right) \leq z<a_{4}-b_{1}
\end{array}\right.
$$

i.e. $A(-) B$ is a generalized trapezoidal fuzzy set.

3.3. Multiplication

In fugure 3 , we see that the maximum value of $\min \left\{\mu_{A}(x), \mu_{B}(x)\right\}$ on the curve $x y=z$ occurs at the intersection point of the $x y=z$ and the path joining the four points E, P, R and G.

Figure 3. Contour plot of $(x, y) \mapsto \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$ and $x y=z$

Then

$$
\mu_{A(\cdot) B}(z)=\left\{\begin{array}{cl}
0, & z<a_{1} b_{1}, a_{4} b_{4} \leq z \\
\psi_{3}(z), & a_{1} b_{1} \leq z<a_{2} p \\
\eta_{3}(z), & a_{2} p \leq z<a_{3} r \\
\zeta_{3}(z), & a_{3} r \leq z<a_{4} b_{4}
\end{array}\right.
$$

Therefore

- $\psi_{3}(z)$ is determined by the intersection point of the line $x y=z$ with the line joining the two points E and P :

$$
\begin{cases}x y & =z \\ y-b_{1} & =\frac{p-b_{1}}{a_{2}-a_{1}}\left(x-a_{1}\right)\end{cases}
$$

The x-coordinate of the intersection point is

$$
x_{E P}=\frac{D+\sqrt{D^{2}+4 m_{1} m_{2}\left(b_{2}-b_{1}\right)\left(a_{2}-a_{1}\right) z}}{2 m_{1}\left(b_{2}-b_{1}\right)}
$$

Hence

$$
\begin{aligned}
\psi_{3}(z) & =\mu_{A}\left(x_{E P}\right) \\
& =\frac{-D_{1}+\sqrt{D^{2}+4 m_{1} m_{2}\left(b_{2}-b_{1}\right)\left(a_{2}-a_{1}\right) z}}{2\left(b_{2}-b_{1}\right)\left(a_{2}-a_{1}\right)}
\end{aligned}
$$

where

$$
\begin{aligned}
D & =b_{1} m_{2}\left(a_{2}-a_{1}\right)-a_{1} m_{1}\left(b_{2}-b_{1}\right) \\
D_{1} & =b_{1} m_{2}\left(a_{2}-a_{1}\right)+a_{1} m_{1}\left(b_{2}-b_{1}\right)
\end{aligned}
$$

- $\eta_{3}(z)$ is a constant function m_{1} on $\left[a_{2} p, a_{3} r\right]$ because $(x, y) \mapsto$ $\min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$ takes constant value m_{1} on the rectangle $P Q R S$.
- $\eta_{3}(z)$ is determined by the intersection point of the line $x y=z$ with the line joining the two points R and G :

$$
\begin{cases}x y & =z \\ y-r & =\frac{b_{4}-r}{a_{4}-a_{3}}\left(x-a_{3}\right)\end{cases}
$$

The x-coordinate of the intersection point is

$$
x_{R G}=\frac{\widetilde{D}+\sqrt{\widetilde{D}^{2}+4 m_{1} m_{2}\left(b_{4}-b_{3}\right)\left(a_{4}-a_{3}\right)}}{2 m_{1}\left(b_{4}-b_{3}\right)}
$$

Hence

$$
\begin{aligned}
\zeta_{3}(z) & =\mu_{A}\left(y_{R G}\right) \\
& =\frac{\widetilde{D}_{1}-\sqrt{\widetilde{D}^{2}+4 m_{1} m_{2}\left(b_{4}-b_{3}\right)\left(a_{4}-a_{3}\right) z}}{2\left(b_{4}-b_{3}\right)\left(a_{4}-a_{3}\right)}
\end{aligned}
$$

where

$$
\begin{aligned}
\widetilde{D} & =a_{4} m_{1}\left(b_{4}-b_{3}\right)-b_{4} m_{2}\left(a_{4}-a_{3}\right) \\
\widetilde{D}_{1} & =a_{4} m_{1}\left(b_{4}-b_{3}\right)+b_{4} m_{2}\left(a_{4}-a_{3}\right)
\end{aligned}
$$

In summary, the membership function $\mu_{A(\cdot) B}(z)$ is

$$
\left\{\begin{array}{cl}
0, & z<a_{1} b_{1}, a_{4} b_{4} \leq z \\
\frac{-D_{1}+\sqrt{D^{2}+4 m_{1} m_{2}\left(b_{2}-b_{1}\right)\left(a_{2}-a_{1}\right) z}}{2\left(b_{2}-b_{1}\right)\left(a_{2}-a_{1}\right)}, & a_{1} b_{1} \leq z<a_{2}\left(b_{1}+\left(b_{2}-b_{1}\right) \cdot \frac{m_{1}}{m_{2}}\right) \\
m_{1}, & a_{2}\left(b_{1}+\left(b_{2}-b_{1}\right) \cdot \frac{m_{1}}{m_{2}}\right) \leq z \\
& \quad<a_{3}\left(b_{4}-\left(b_{4}-b_{3}\right) \cdot \frac{m_{1}}{m_{2}}\right) \\
& \\
\frac{\widetilde{D}_{1}-\sqrt{\widetilde{D}^{2}+4 m_{1} m_{2}\left(b_{4}-b_{3}\right)\left(a_{4}-a_{3}\right) z}}{2 m_{1}\left(b_{4}-b_{3}\right)}, & a_{3}\left(b_{4}-\left(b_{4}-b_{3}\right) \cdot \frac{m_{1}}{m_{2}}\right) \leq z<a_{4} b_{4}
\end{array}\right.
$$

where

$$
\begin{aligned}
D & =b_{1} m_{2}\left(a_{2}-a_{1}\right)-a_{1} m_{1}\left(b_{2}-b_{1}\right) \\
D_{1} & =b_{1} m_{2}\left(a_{2}-a_{1}\right)+a_{1} m_{1}\left(b_{2}-b_{1}\right) \\
\widetilde{D} & =a_{4} m_{1}\left(b_{4}-b_{3}\right)-b_{4} m_{2}\left(a_{4}-a_{3}\right) \\
\widetilde{D}_{1} & =a_{4} m_{1}\left(b_{4}-b_{3}\right)+b_{4} m_{2}\left(a_{4}-a_{3}\right)
\end{aligned}
$$

i.e. $A(\cdot) B$ is a fuzzy set on $\left(a_{1} b_{1}, a_{4} b_{4}\right)$, but need not to be a generalized trapezoidal fuzzy set.

3.4. Division

In fugure 4 , we see that the maximum value of $\min \left\{\mu_{A}(x), \mu_{B}(x)\right\}$ on the curve $\frac{x}{y}=z$ occurs at the intersection point of the $\frac{x}{y}=z$ and the path joining the four points H, S, Q and F.

Then

$$
\mu_{A(/) B}(z)=\left\{\begin{array}{cl}
0, & z<\frac{a_{1}}{b_{4}}, \frac{a_{4}}{b_{1}} \leq z \\
\psi_{4}(z), & \frac{a_{1}}{b_{4}} \leq z<\frac{a_{2}}{r} \\
\eta_{4}(z), & \frac{a_{2}}{r} \leq z<\frac{a_{3}}{p} \\
\zeta_{4}(z), & \frac{a_{3}}{p} \leq z<\frac{a_{4}}{b_{1}}
\end{array}\right.
$$

Therefore

Figure 4. Contour plot of $(x, y) \mapsto \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$

$$
\text { and } \frac{x}{y}=z
$$

- $\psi_{4}(z)$ is determined by the intersection point of the line $\frac{x}{y}=z$ with the line joining the two points H and S :

$$
\begin{cases}\frac{x}{y} & =z \\ y-b_{4} & =\frac{r-b_{4}}{a_{2}-a_{1}}\left(x-a_{1}\right)\end{cases}
$$

The y-coordinate of the intersection point is

$$
y_{H S}=\frac{m_{2} b_{4}\left(a_{2}-a_{1}\right)+m_{1} a_{1}\left(b_{4}-b_{3}\right)}{m_{1}\left(b_{4}-b_{3}\right) z+m_{2}\left(a_{2}-a_{1}\right)}
$$

Hence

$$
\begin{aligned}
\psi_{4}(z) & =\mu_{B}\left(y_{H S}\right) \\
& =\frac{m+1 m_{2}\left(b_{4} z-a_{1}\right)}{m_{1}\left(b_{4}-b_{3}\right) z+m_{2}\left(a_{2}-a_{1}\right)}
\end{aligned}
$$

- $\eta_{4}(z)$ is a constant function m_{1} on $\left[\frac{a_{2}}{r}, \frac{a_{3}}{p}\right]$ because $(x, y) \mapsto$ $\min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$ takes constant value m_{1} on the rectangle PQRS.
- $\eta_{4}(z)$ is determined by the intersection point of the line $\frac{x}{y}=z$ with the line joining the two points Q and F :

$$
\begin{cases}\frac{x}{y} & =z \\ y-p & =\frac{b 1-p}{a_{4}-a_{3}}\left(x-a_{3}\right)\end{cases}
$$

The y-coordinate of the intersection point is

$$
y_{Q F}=\frac{b_{1} m_{2}\left(a_{4}-a_{3}\right)+a_{4} m_{1}\left(b_{2}-b_{1}\right)}{\left(b_{2}-b_{1}\right) m_{1} z+m_{2}\left(a_{4}-a_{3}\right)}
$$

Hence

$$
\begin{aligned}
\zeta_{4}(z) & =\mu_{B}\left(y_{Q F}\right) \\
& =\frac{m_{1} m_{2}\left(a_{4}-b_{1} z\right)}{m_{1}\left(b_{2}-b_{1}\right) z+m_{2}\left(a_{4}-a_{3}\right)}
\end{aligned}
$$

In summary,

$$
\mu_{A(/) B}(z)=\left\{\begin{array}{cl}
0, & z<\frac{a_{1}}{b_{4}}, \frac{a_{4}}{b_{1}} \leq z \\
\frac{m_{1} m_{2}\left(b_{4} z-a_{1}\right)}{m_{1}\left(b_{4}-b_{3}\right) z+m_{2}\left(a_{2}-a_{1}\right)}, & \frac{a_{1}}{b_{4}} \leq z<\frac{a_{2}}{b_{4}-\left(b_{4}-b_{3}\right) \cdot \frac{m_{1}}{m_{2}}} \\
m_{1}, & \frac{a_{2}}{b_{4}-\left(b_{4}-b_{3}\right) \cdot \frac{m_{1}}{m_{2}}} \leq z<\frac{a_{3}}{b_{1}+\left(b_{2}-b_{1}\right) \cdot \frac{m_{1}}{m_{2}}} \\
\frac{m_{1} m_{2}\left(a_{4}-b_{1} z\right)}{m_{1}\left(b_{2}-b_{1}\right) z+m_{2}\left(a_{4}-a_{3}\right)}, & \frac{a_{3}}{b_{1}+\left(b_{2}-b_{1}\right) \cdot \frac{m_{1}}{m_{2}}} \leq z<\frac{a_{4}}{b_{1}}
\end{array}\right.
$$

i.e. $A(/) B$ is a fuzzy set on $\left(\frac{a_{1}}{b_{4}}, \frac{a_{4}}{b_{1}}\right)$, but need not to be a generalized trapezoidal fuzzy set.

4. Examples

Example 4.1. For two generalized trapezoidal sets, $A=\left(1,2, \frac{1}{2}, 3,6\right)$ and $B=\left(2,4, \frac{7}{10}, 5,8\right)$, we have the followings.

$$
\mu_{A(+) B}(z)=\left\{\begin{array}{cl}
0, & z<3,14 \leq z \\
\frac{7(z-3)}{34}, & 3 \leq z<\frac{38}{7} \\
\frac{1}{2}, & \frac{38}{7} \leq z<\frac{62}{7} \\
\frac{7(14-z)}{72}, & \frac{62}{7} \leq z<14
\end{array}\right.
$$

$$
\left.\begin{array}{rl}
\mu_{A(-) B}(z) & =\left\{\begin{array}{cl}
0, & z<-7,4 \leq z \\
\frac{7(7+z)}{44}, & -7 \leq z<-\frac{27}{7} \\
\frac{1}{2}, & -\frac{27}{7} \leq z<-\frac{3}{7}
\end{array}\right. \\
\frac{7(4-z)}{62}, & -\frac{3}{7} \leq z<4
\end{array}\right\} \begin{array}{cl}
0, & z<2,48 \leq z \\
\mu_{A(\cdot) B}(z) & =\left\{\begin{array}{cl}
\frac{-12+\sqrt{4+70 z},}{20}, & 2 \leq z<\frac{48}{7} \\
\frac{1}{2}, & \frac{48}{7} \leq z<\frac{123}{7} \\
\frac{43-\sqrt{169+35 z}}{30}, & \frac{123}{7} \leq z<48
\end{array}\right. \\
\mu_{A(/) B}(z) & =\left\{\begin{array}{cl}
0, & z<\frac{1}{8}, 3 \leq z \\
\frac{7(-1+8 z)}{2(7+15 z)}, & \frac{1}{8} \leq z<\frac{14}{41} \\
\frac{1}{2}, & \frac{4}{3} \leq z<\frac{20}{9} \\
\frac{7(3-z)}{21+10 z}, & \frac{7}{8} \leq z<3
\end{array}\right.
\end{array}
$$

Example 4.2. Let us consider now two triangular fuzzy numbers, $A=(2,4,7)$ and $B=(3,6,11)$. These may be identified with $A=$ $(2,4,1,4,7)$ and $B=(3,6,1,6,11)$. Then

$$
\begin{aligned}
\mu_{A(+) B}(z) & =\left\{\begin{array}{cl}
0, & z<5,18 \leq z \\
\frac{-5+z}{5}, & 5 \leq z<10 \\
\frac{18-z}{8}, & 10 \leq z<18
\end{array}\right. \\
\mu_{A(-) B}(z) & =\left\{\begin{array}{cl}
0, & z<-9,4 \leq z \\
\frac{9+z}{7}, & -9 \leq z<-2 \\
\frac{4-z}{6}, & -2 \leq z<4
\end{array}\right. \\
\mu_{A(\cdot) B}(z) & =\left\{\begin{array}{cc}
0, & z<6,77 \leq z \\
\frac{-6+\sqrt{6 z}}{6}, & 6 \leq z<24 \\
\frac{34-\sqrt{1+15 z}}{15}, & 24 \leq z<77
\end{array}\right. \\
\mu_{A(/) B}(z) & =\left\{\begin{array}{cc}
0, & z<\frac{2}{11}, \frac{7}{3} \leq z \\
\frac{11 z-2}{5 z+2}, & \frac{2}{11} \leq z<\frac{2}{3} \\
\frac{7-3 z}{3+3 z}, & \frac{2}{3} \leq z<\frac{7}{3}
\end{array}\right.
\end{aligned}
$$

Example 4.3. For two fuzzy sets, $A=\left(\left(3, \frac{4}{5}, 9\right)\right)$ and $B=\left(\left(2, \frac{6}{7}, 7\right)\right)$, we identify these with $A=\left(3,6, \frac{4}{5}, 6,9\right)$ and $B=\left(2, \frac{9}{2}, \frac{6}{7}, \frac{9}{2}, 7\right)$. Then

$$
\mu_{A(+) B}(z)=\left\{\begin{array}{cl}
0, & z<5,16 \leq z \\
\frac{3(z-5)}{20}, & 5 \leq z<\frac{31}{3} \\
\frac{4}{5}, & \frac{31}{3} \leq z<\frac{32}{3} \\
\frac{3(16-z)}{20}, & \frac{32}{3} \leq z<16
\end{array}\right.
$$

$$
\begin{aligned}
& \mu_{A(-) B}(z)=\left\{\begin{array}{cl}
0, & z<-4,7 \leq z \\
\frac{2(4+z)}{20}, & -4 \leq z<\frac{4}{3} \\
\frac{4}{5}, & \frac{4}{3} \leq z<\frac{5}{3} \\
\frac{3(7-z)}{20}, & \frac{5}{3} \leq z<7
\end{array}\right. \\
& \mu_{A(\cdot) B}(z)=\left\{\begin{array}{cl}
0, & z<6,63 \leq z \\
\frac{2(-13+\sqrt{28+z})}{35}, & 6 \leq z<26 \\
\frac{4}{5}, & 26 \leq z<28 \\
\frac{4(21-\sqrt{7 z})}{35}, & 28 \leq z<63
\end{array}\right. \\
& \mu_{A(/) B}(z)=\left\{\begin{array}{cl}
0, & z<\frac{3}{7}, \frac{9}{2} \leq z \\
\frac{12(-3+7 z)}{5(9+7 z)}, & \frac{3}{7} \leq z<\frac{9}{7} \\
\frac{4}{5}, & \frac{9}{7} \leq z<\frac{18}{13} \\
\frac{12(9-2 z)}{5(9+7 z)}, & \frac{18}{13} \leq z<\frac{9}{2}
\end{array}\right.
\end{aligned}
$$

References

[1] Y. S. Yun, S. U. Ryu, and J. W. Park, The generalized triangular fuzzy sets, Journal of the Chungcheong Mathematical Society. 22 (2009), no. 2, 161-170.
[2] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, I Information Sciences. 8 (1975), 199-249.
[3] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, II Information Sciences. 8 (1975), 301-357.
[4] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, III Information Sciences. 9 (1975), 43-80.
*
Korea Institute for Curriculum and Evaluation
Seoul 100-784, Republic of Korea
E-mail: yibongju@kice.re.kr
**
Department of Mathematics and Research Institute for Basic Sciences Jeju National University
Jeju 690-756, Republic of Korea
E-mail: yunys@jejunu.ac.kr

[^0]: Received March 04, 2011; Accepted May 16, 2011.
 2010 Mathematics Subject Classification: Primary 47N30.
 Key words and phrases: generalized trapezoidal fuzzy set, four operations, Zadeh's extension principle, generalized triangular fuzzy set.

 Correspondence should be addressed to Yong Sik Yun, yunys@jejunu.ac.kr.

