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EXISTENCE OF NASH EQUILIBRIUM IN A
NON-COMPACT ACYCLIC STRATEGIC GAME WITH

INFINITE PLAYERS

Won Kyu Kim*

Abstract. In this paper, we will prove an equilibrium existence
theorem of a non-compact acyclic strategic game with affine con-
straint correspondences which is comparable with equilibrium exis-
tence theorems due to Debreu, Nash, Kim-Kum, and Lu in several
aspects.

1. Introduction

In mathematical economics, showing the existence of equilibrium is
the main problem of investigating various kind of economic models. In
general economic models, convexity assumptions are essential and basic
to apply the well-known fixed point theorems as in [1,4,6-8]. Until now,
there have been a number of generalized convex conditions investigated
by several authors, and using those concepts, there have been numerous
equilibrium existence theorems in generalized games as in [4,8].

On the other hand, in some economic models, neither convexity nor
quasiconvexity assumptions can be guaranteed, e.g., the best response
correspondences in the pure strategy spaces of auctions, political con-
tests, models of imperfect competition are not convex-valued in general
(e.g., see [1]). Hence we shall need some general concepts for removing
the convexity assumptions of the strategy spaces and the payoff func-
tions. For these purposes, some homological conditions are introduced in
general. In this direction, Kim and Kum [5] recently investigated some
general existence of pure-strategy Nash equilibria with acyclic values by
using Begle’s fixed point theorem.
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In this paper, following Debreu’s method [3], we will prove an equi-
librium existence theorem in a non-compact acyclic strategic game with
affine constraint correspondences which is comparable with equilibrium
existence theorems due to Debreu [3], Nash [7], Kim-Kum [5], and Lu
[6] in several aspects.

2. Preliminaries

Let I be a (possibly uncountable) set of players, and let Xi be a
nonempty topological space as an action space for each i ∈ I, and denote
X−i :=

∏
j∈I\{i}Xj . For an action profile x = (xi)i∈I ∈ X = Πi∈IXi, we

shall write x−i = (x1, · · · , xi−1, xi+1, · · · ) ∈ X−i; and if xi ∈ Xi, x−i ∈
X−i, we simply write a typical strategy profile

x = (x−i, xi) := (x1, · · · , xi−1, xi, xi+1, · · · ) ∈ X−i ×Xi.

We now introduce some general notions and terminologies in gener-
alized non-cooperative strategic games. A generalized Nash game (or
social system) is an ordered triples Γ = (Xi; Ti, fi)i∈I where for each
player i ∈ I, the nonempty set Xi is a player’s pure strategy space,
Ti : X → 2Xi is a player’s constraint correspondence, and fi : X → R
is a player’s payoff (or utility) function. The set X, joint strategy space,
is the Cartesian product of the individual strategy spaces, and the ele-
ment of Xi is called a strategy. Then, a strategy tuples x̄ = (x̄i)i∈I ∈ X
is called the Nash equilibrium (or social equilibrium) for the game Γ if
the following system of inequalities holds: for each i ∈ I,

x̄i ∈ Ti(x̄), and fi(x̄−i, x̄i) ≥ fi(x̄−i, xi) for each xi ∈ Ti(x̄).

In [2], Begle introduced a common general notion of an lc space which
contains both a compact convex subset in a locally convex topological
vector space, and an absolute neighborhood retract(ANR), and for the
definition and properties of lc space, see [2].

The following Begle fixed point theorem, which is a generalization
of the Eilenberg-Montgomery fixed point theorem into an lc space, is
essential in general acyclic settings:

Lemma 2.1. [2] Let X be a nonempty compact acyclic lc space and
T : X → 2X have closed graph in X ×X with nonempty acyclic values.
Then T has a fixed point.

If X is a compact convex subset in a locally convex Hausdorff topo-
logical vector space, then X is a compact acyclic lc space so that Fan-
Glicksberg’s fixed point theorem is a consequence of Lemma 2.1.
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Throughout this paper, all topological spaces are assumed to be Haus-
dorff, and for the other standard notations and terminologies, we shall
refer to [4,5].

3. Nash equilibrium in a non-compact acyclic strategic game

In a generalized Nash game Γ = (Xi; Ti, fi)i∈I , we recall that the set
of all real-valued payoff functions {fi | i ∈ I} satisfy the unconditional
summability [5] if any rearrangement

∑
j∈I fj(x−j , xj) of the infinite sum∑

i∈I fi(x−i, xi) converges to the same real value. Indeed, the uncondi-
tional summability should be needed for a generalized Nash game with
infinite players, and it should be noted that {fi | i ∈ I} is uncondition-
ally summable if the sum

∑
i∈I fi(x−i, xi) converges absolutely. From

now on, we may assume that the set of all real-valued payoff functions
{fi | i ∈ I} satisfies the unconditional summablity in a generalized Nash
game Γ.

For the existence of Nash equilibrium in a generalized Nash game Γ,
let us define the total sum of payoff function H : X×X → R associated
with the strategic game Γ as follows:

H(y, x) :=
∑

i∈I fi(x−i, yi) for each x, y ∈ X =
∏

i∈I Xi.

Now we can obtain the following equivalences which generalizes the
theorems due to Kim-Kum [5] and Nikaido-Isoda [8]:

Lemma 3.1. Let Γ = (Xi;Ti, fi)i∈I be a generalized Nash game where
I be a (possibly uncountable) set of players. Then the followings are
equivalent:

(1) x̄ ∈ X =
∏

i∈I Xi is a Nash equilibrium for Γ;
(2) for each i ∈ I, x̄i ∈ Ti(x̄), and

fi(x̄−i, x̄i) ≥ fi(x̄−i, xi) for all xi ∈ Ti(x̄);
(3) for each i ∈ I, x̄i ∈ Ti(x̄), and

H(x̄, x̄) ≥ H(y, x̄) for all y ∈ Πi∈ITi(x̄).

Proof. The equivalence of (1) and (2) follows immediately from the
definition of a Nash equilibrium. The implication (2) ⇒ (3) is obtained
by adding both sides of the inequalities fi(x̄−i, x̄i) ≥ fi(x̄−i, xi) for all
i ∈ I. To prove (3) implies (2), we first fix i, and take y = (x̄−i, yi) where
yi ∈ Ti(x̄). Then the inequality H(x̄, x̄) ≥ H(y, x̄) may be written as

fi(x̄−i, x̄i)− fi(x̄−i, yi) +
∑

j 6=i

(
fj(x̄−j , x̄j)− fj(x̄−j , yj)

) ≥ 0.
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Since yj = x̄j whenever j 6= i, we have that for all i ∈ I, fi(x̄−i, x̄i)−
fi(x̄−i, yi) ≥ 0, which proves (2).

Remark 3.2. Lemma 3.1 generalizes the previous results due to Kim-
Kum [5], and Nikaido-Isoda [8] in the following aspects:

(i) the set I of players need not be a finite set;
(ii) the inequalities on H(y, x) need not satisfy in the whole strategy

set Xi, but on the i-th player’s constraint set Ti(x̄).

For simplicity of notations, we denote the fixed point set F ⊆ X of a
correspondence T = Πi∈ITi : X → 2X by

F = {x ∈ X | xi ∈ Ti(x) for all i ∈ I},
and the range of T byR(T ) in a generalized Nash game Γ = (Xi ; Ti, fi)i∈I .

Applying the Begle fixed point theorem, we now prove a new existence
theorem of Nash equilibrium for a non-compact acyclic strategic game
with affine constraint correspondences as follows:

Theorem 3.3. Let Γ = (Xi ; Ti, fi)i∈I be a generalized Nash game,
where I be a (possibly uncountable) set of players, such that for each
i ∈ I, the strategy set Xi is a convex subset in a topological vector
space, and Di is a nonempty compact subset of Xi. Let X =

∏
i∈I Xi,

and D =
∏

i∈I Di. For each i ∈ I, fi : X → R is a player’s payoff

function, and Ti : X → 2Di is upper semicontinuous such that each
Ti(x) is a nonempty closed subset of Di. For each i ∈ I, Ti satisfies the
affine condition such that for each λ ∈ [0, 1],

λTi(x) + (1− λ)Ti(y) ⊆ Ti(λx + (1− λ)y) for all x, y ∈ X.

Furthermore, assume that D and F are acyclic lc spaces, and each
T (x) is acyclic, and H : X ×X → R satisfy the following:

(1) (x, y) 7→ H(y, x)−H(x, x) is lower semicontinuous in X ×X;
(2) for each x ∈ F , {y ∈ R(T ) | H(x, x) < H(y, x)} is convex;
(3) for each y ∈ R(T ), {x ∈ F | H(y, x) ≤ H(x, x)} is nonempty

acyclic.

Then Γ has a Nash equilibrium x̄ ∈ X, i.e., for each i ∈ I,

x̄i ∈ Ti(x̄), and fi(x̄−i, x̄i) ≥ fi(x̄−i, xi) for each xi ∈ Ti(x̄).

Proof. Suppose the contrary; then, by Lemma 3.1 (3), for each x ∈ X,
either xi /∈ Ti(x) for some i ∈ I, or there exists y ∈ T (x) such that
H(x, x) < H(y, x). (∗)
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Since each Ti is upper semicontinuous having nonempty compact values,
the restriction T |D : D → 2D, defined by T |D(x) := Πi∈ITi(x) for
each x ∈ D, is also upper semicontinuous having nonempty compact
acyclic values. Therefore, by Lemma 2.1, there exists a fixed point
x̂ ∈ D for T , i.e., x̂i ∈ Ti(x̂) for each i ∈ I. Then the fixed point set
F ⊆ D of the correspondence T is a nonempty closed subset of D by
the upper semicontinuity of T . Moreover, by the affine assumption on
Ti, F is a convex set. Indeed, if x1, x2 ∈ F and λ ∈ [0, 1] are arbitrarily
given. Then, for each i ∈ I, (x1)i ∈ Ti(x1) and (x2)i ∈ Ti(x2). Let
x = λx1 + (1− λ)x2 ∈ X, then for each i ∈ I,

xi = λ(x1)i + (1− λ)(x2)i ∈ λTi(x1) + (1− λ)Ti(x2)

⊆ Ti(λx1 + (1− λ)x2) = Ti(x);

so that F is a convex subset of D and hence F is an acyclic subset of
D. Similarly, we can also have that R(T ) is a convex subset of D.

For each x ∈ F , xi ∈ Ti(x) for all i ∈ I, and hence there must exist
y ∈ T (x) ⊂ R(T ) such that H(x, x) < H(y, x) in the equation (∗) of
the reduction ad absurdam. For each y ∈ R(T ), we let

N(y) := {x ∈ F | H(x, x) < H(y, x)}.
By the assumption (1), each N(y) is (possibly empty) open in F . If x ∈
F , then x ∈ N(y) for some y ∈ R(T ) so that we have

⋃
y∈R(T ) N(y) =

F . Since F is compact, there exists a finite number of points {y1, . . . , yn}
⊂ R(T ), and nonempty open sets N(y1), . . . , N(yn) such that

⋃n
i=1 N(yi)

= F . Let {αi | i = 1, . . . , n} be the continuous partition of unity subor-
dinated to the open covering {N(yi) | i = 1, . . . , n} of the compact set
F .

We now define a mapping φ : F → R(T ) by

φ(x) :=
n∑

i=1

αi(x) yi for each x ∈ F .

Then, φ is a continuous mapping since each αi is continuous. By the
assumption (2), for fixed x ∈ F , the set {y ∈ R(T ) | H(x, x) < H(y, x)}
is convex in R(T ) so that we have

φ(x) ∈ co {yi ∈ R(T ) | αi(x) 6= 0}
⊆ {y ∈ R(T ) | H(x, x) < H(y, x)}; (†)

and hence we also see that φ maps F into R(T ).
Next, we define a correspondence S : R(T ) → 2F by

S(y) := {x ∈ F | H(y, x) ≤ H(x, x)} for each y ∈ R(T ).
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Then, for each y ∈ R(T ), by the assumption (3), S(y) is a nonempty
acyclic subset in F . By the assumption (1) again, the set {(x, y) ∈
F ×F | H(y, x)−H(x, x) ≤ 0} is nonempty closed in F ×F and hence
it is compact. Therefore, for each y ∈ R(T ), S(y) is the projection of
a nonempty compact set in F × F so that S(y) is compact. Next, it is
easy to see that S has a closed graph in R(T )×F . In fact, for any nets
(xα) → xo, (yα) → yo, yα ∈ S(xα), we have H(yα, xα) ≤ H(xα, xα).
Since the mapping (x, y) 7→ H(y, x)−H(x, x) is lower semicontinuous,
we have H(yo, xo) ≤ H(xo, xo). Hence yo ∈ S(xo) and S has a closed
graph in R(T )×F .

Finally, we define a correspondence Φ : F → 2F by

Φ(x) = (S ◦ φ)(x) for each x ∈ F .

Since S has a closed graph and φ is continuous, Φ has a closed graph
in a compact set F × F , and each Φ(x) is nonempty compact acyclic.
Therefore, by Lemma 2.1 again, there exists a fixed point x̄ ∈ F for Φ
such that x̄ ∈ Φ(x̄) = S(φ(x̄)). Let x∗ = φ(x̄) ∈ R(T ); then

x̄ ∈ S(x∗) = {x ∈ F | H(x∗, x) ≤ H(x, x)}
so that H(x∗, x̄) ≤ H(x̄, x̄). On the other hand, since x∗ = φ(x̄), by the
inclusion (†), we have

x∗ = φ(x̄) ∈ {y ∈ R(T ) | H(x̄, x̄) < H(y, x̄)}
so that H(x∗, x̄) > H(x̄, x̄), which is a contradiction.

Remark 3.4. (1) Theorem 3.3 is a new equilibrium existence theorem
which is comparable with the previous equilibrium existence theorems
due to Becker-Damianov [1], Debreu [3], Nash [7], Kim-Kum [5], Nikaido-
Isoda [8], and Lu [6] in the following aspects:

(i) the set I of players need not be a finite set;
(ii) every payoff function fi need not be (quasi)concave nor continuous

on X. Indeed, when Ti(x) = Xi = Di for each i ∈ I, then we have
R(T ) = F = X so that if each fi : X → R is continuous on X and
the function yi 7→ fi(x−i, yi) is quasiconcave on Xi as in [6-8], then the
assumptions (1) and (2) of Theorem 3.3 are satisfied.

(2) In Theorem 3.2 of Kim-Kum [5], Xi need not be convex but X is
assumed to be a nonempty compact acyclic subset. Furthermore, their
assumptions (2) and (3) are stronger than the corresponding assump-
tions in Theorem 3.3.

As remarked before, when Xi = Di is compact convex, and Ti(x) :=
Xi for each x ∈ X and i ∈ I in Theorem 3.3, then we have R(T ) =
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F = X and Ti automatically satisfies the affine condition so that we can
obtain the following:

Theorem 3.5. Let Γ = (Xi ; fi)i∈I be a generalized Nash game,
where I be a set of players, such that for each i ∈ I, the strategy set Xi

is a convex subset in a topological vector space, and X =
∏

i∈I Xi, and
fi : X → R is a player’s payoff function. Assume that X is a nonempty
compact acyclic lc space, and H : X ×X → R satisfy the following:

(1) (x, y) 7→ H(y, x)−H(x, x) is lower semicontinuous in X ×X;
(2) for each x ∈ X, {y ∈ X | H(x, x) < H(y, x)} is convex in X;
(3) for each y ∈ X, {x ∈ X | H(y, x) ≤ H(x, x)} is acyclic.

Then Γ has a Nash equilibrium x̄ ∈ X
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