DOI QR코드

DOI QR Code

Computational Fluid Dynamics in Cardiovascular Disease

  • Lee, Byoung-Kwon (Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine)
  • 발행 : 2011.08.30

초록

Computational fluid dynamics (CFD) is a mechanical engineering field for analyzing fluid flow, heat transfer, and associated phenomena, using computer-based simulation. CFD is a widely adopted methodology for solving complex problems in many modern engineering fields. The merit of CFD is developing new and improved devices and system designs, and optimization is conducted on existing equipment through computational simulations, resulting in enhanced efficiency and lower operating costs. However, in the biomedical field, CFD is still emerging. The main reason why CFD in the biomedical field has lagged behind is the tremendous complexity of human body fluid behavior. Recently, CFD biomedical research is more accessible, because high performance hardware and software are easily available with advances in computer science. All CFD processes contain three main components to provide useful information, such as pre-processing, solving mathematical equations, and post-processing. Initial accurate geometric modeling and boundary conditions are essential to achieve adequate results. Medical imaging, such as ultrasound imaging, computed tomography, and magnetic resonance imaging can be used for modeling, and Doppler ultrasound, pressure wire, and non-invasive pressure measurements are used for flow velocity and pressure as a boundary condition. Many simulations and clinical results have been used to study congenital heart disease, heart failure, ventricle function, aortic disease, and carotid and intra-cranial cerebrovascular diseases. With decreasing hardware costs and rapid computing times, researchers and medical scientists may increasingly use this reliable CFD tool to deliver accurate results. A realistic, multidisciplinary approach is essential to accomplish these tasks. Indefinite collaborations between mechanical engineers and clinical and medical scientists are essential. CFD may be an important methodology to understand the pathophysiology of the development and progression of disease and for establishing and creating treatment modalities in the cardiovascular field.

키워드

참고문헌

  1. Versteeg HK, Malalasekera W. Introduction To Computational Fluid Dynamics. The Finite Volume Method. 1st ed. New York: Longman Scientific & Technical;1995.
  2. Tu J, Yeoh GH, Liu C. Computational Fluid dynamics. A Practical Approach. 1st ed. Oxford: Elesevier;2008.
  3. Fung YC. Biomechanics. New York: Springer-Verlag;1981.
  4. Cho YI, Cho DJ. Hemorheology and microvascular disorders. Korean Circ J 2011;41:287-95. https://doi.org/10.4070/kcj.2011.41.6.287
  5. Nichols WW, O'Rouke MF. McDonald's Blood Flow in Arteries Theoretical, Experimental and Clinical Principles. 5th ed. London: Hodder Arnold;2005.
  6. Lee BK, Kwon HM, Hong BK, et al. Hemodynamic effects on atherosclerosis-prone coronary artery: wall shear stress/rate distribution and impedance phase angle in coronary and aortic circulation. Yonsei Med J 2001;42:375-83.
  7. Freidman MH, Deter OJ, Mar FF, Bargeron CB, Hutchins GM. Arterial geometry affects hemodynamics: a potential risk factor for atherosclerosis. Atherosclerosis 1983;46:225-31. https://doi.org/10.1016/0021-9150(83)90113-2
  8. Fuster V, Badimon L, Badimon J, Chesebro JH. The pathogenesis of coronary artery disease and acute coronary syndromes. N Engl J Med 1992;326:242-50. https://doi.org/10.1056/NEJM199201233260406
  9. Lee BK, Kwon HM, Kim DS, et al. Computed numerical analysis of the biomechanical effects on coronary atherogenesis using human he-modynamic and dimensional variables. Yonsei Med J 1998;39:166-74. https://doi.org/10.3349/ymj.1998.39.2.166
  10. Qiu Y, Tarbell JM. Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. J Biomech Eng 2000; 122:77-85. https://doi.org/10.1115/1.429629
  11. Ramaswamy SD, Vigmostad SC, Wahle A, et al. Fluid dynamic an-alysis in a human left anterior descending coronary artery with arterial motion. Ann Biomed Eng 2004;32:1628-41. https://doi.org/10.1007/s10439-004-7816-3
  12. Giannoglou GD, Soulis JV, Farmakis TM, Giannakoulas GA, Parcharidis GE, Louridas GE. Wall pressure gradient in normal left coronary artery tree. Med Eng Phys 2005;27:455-64. https://doi.org/10.1016/j.medengphy.2004.12.015
  13. LaDisa JF Jr, Olson LE, Douglas HA, Warltier DO, Kersten JR, Pagel PS. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: an-alysis of a curved coronary artery using 3D computational fluid dyna-mics modeling. Biomed Eng Online 2006;16:40.
  14. Papafaklis MI, Bourantas CV, Theodorakis PE, Katsouras CS, Fotiadis DI, Michalis LK. Association of endothelial shear stress with plaque thickness in a real three-dimensional left main coronary artery bifurcation model. Int J Cardiol 2007;115:276-8. https://doi.org/10.1016/j.ijcard.2006.04.030
  15. Lee BK, Lee JY, Hong BK, et al. Hemodynamic analysis of coronary circulation in angulated coronary stenosis following stenting. Yonsei Med J 2002;43:590-600. https://doi.org/10.3349/ymj.2002.43.5.590
  16. Ramaswamy SD, Vigmostad SC, Wahle A, et al. Comparison of left anterior descending coronary artery hemodynamics before and after angioplasty. J Biomech Eng 2006;128:40-8. https://doi.org/10.1115/1.2132371
  17. Sankaranarayanan M, Chua LP, Ghista DN, Tan YS. Computational model of blood flow in the aorto-coronary bypass graft. Biomed Eng Online 2005;4:14. https://doi.org/10.1186/1475-925X-4-14
  18. Freshwater IJ, Morsi YS, Lai T. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow. Proc Inst Mech Eng H 2006;220:743-57. https://doi.org/10.1243/09544119JEIM126
  19. Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax 1971;26:240-8. https://doi.org/10.1136/thx.26.3.240
  20. Feldt RH, Driscoll DJ, Offord KP, et al. Protein-losing enteropathy after the Fontan operation. J Thorac Cardiovasc Surg 1996;112:672-80. https://doi.org/10.1016/S0022-5223(96)70051-X
  21. Starnes SL, Duncan BW, Kneebone JM, et al. Angiogenic proteins in the lungs of children after cavopulmonary anastomosis. J Thorac Car-diovasc Surg 2001;122:518 -23. https://doi.org/10.1067/mtc.2001.115423
  22. Matthews IL, Fredriksen PM, Bjornstad PG, Thaulow E, Gronn M. Reduced pulmonary function in children with the Fontan circulation affects their exercise capacity. Cardiol Young 2006;16:261-7. https://doi.org/10.1017/S1047951106000345
  23. Gewillig M. The Fontan circulation. Heart 2005;91:839-46. https://doi.org/10.1136/hrt.2004.051789
  24. Cheung YF, Penny DJ, Redington AN. Serial assessment of left ventricular diastolic function after Fontan procedure. Heart 2000;83: 420-4. https://doi.org/10.1136/heart.83.4.420
  25. Gerdes A, Kunze J, Pfister G, et al. Addition of a small curvature redu-ces power losses across total cavopulmonary connections. Ann Thorac Surg 1999;67:1760-4. https://doi.org/10.1016/S0003-4975(99)00323-9
  26. Myers CD, Boyd JH, Presson RG Jr, et al. Neonatal cavopulmonary assist: pulsatile versus steady-flow pulmonary perfusion. Ann Thorac Surg 2006;81:257-63. https://doi.org/10.1016/j.athoracsur.2005.07.003
  27. Hager A, Fratz S, Schwaiger M, Lange R, Hess J, Stern H. Pulmonary blood flow patterns in patients with Fontan circulation. Ann Thorac Surg 2008;85:186-91. https://doi.org/10.1016/j.athoracsur.2007.07.029
  28. Bove EL, de Leval MR, Magliavacca F, Guadagni G, Dubini G. Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 2003;126:1040-7. https://doi.org/10.1016/S0022-5223(03)00698-6
  29. de Zelicourt DA, Pekkan K, Parks J, Kanter K, Fogel M, Yoganathan AP. Flow study of an extracardiac connection with persistent left superior vena cava. J Thorac Cardiovasc Surg 2006;131:785-91. https://doi.org/10.1016/j.jtcvs.2005.11.031
  30. Suh SH, Kaptan Y, Roh HW, et al. Estimation of Heart work by means of modified Windkessel model and different whole blood viscosity models. Proceedings of 7th International Conference on Computational Heat and Mass Transfer, Istanbul;2011.
  31. Westerhof N, Lankhaar JW, Westerhof BE. The arterial Windkessel. Med Biol Eng Comput 2009;47:131-41. https://doi.org/10.1007/s11517-008-0359-2
  32. Yilmaz Y, Gündogdu MY. A critical review on blood flow in large ar-teries: relevance to blood rheology, viscosity models and physiologic conditions. Korea-Aust Rheol J 2008;20:197-211.
  33. Milner JS, Moore JA, Rutt BK, Steinman DA. Hemodynamics of human carotid artery bifurcations: computational studies with models re-constructed from magnetic resonance imaging of normal subjects. J Vasc Surg 1998;28:143-56. https://doi.org/10.1016/S0741-5214(98)70210-1
  34. Lee SW, Antiga L, Spence JD, Steinman DA. Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke 2008;39: 2341-7. https://doi.org/10.1161/STROKEAHA.107.510644
  35. Lee SE, Lee SW, Fischer PF, Bassiouny HS, Loth F. Direct numerical simulation of transitional flow in a stenosed carotid bifurcation. J Biomech 2008;41:2551-61. https://doi.org/10.1016/j.jbiomech.2008.03.038
  36. Martin D, Zaman A, Hacker J, Mendelow D, Birchall D. Analysis of haemodynamic factors involved in carotid atherosclerosis using com-putational fluid dynamics. Br J Radiol 2009;82:S33-8. https://doi.org/10.1259/bjr/59367266
  37. Hayase H, Tokunaga K, Nakayama T, et al. Computational fluid dynamics of carotid arteries after carotid endarterectomy or carotid ar-tery stenting based on postoperative patient-specific computed tomo-graphy angiography and ultrasound flow data. Neurosurgery 2011;68:1096-101; discussion 1101. https://doi.org/10.1227/NEU.0b013e318208f1a0
  38. Xue YJ, Gao PY, Duan Q, et al. Preliminary study of hemodynamic distribution in patient-specific stenotic carotid bifurcation by image-based computational fluid dynamics. Acta Radiol 2008;49:558-65. https://doi.org/10.1080/02841850801918548
  39. Hammer S, Jeays A, Allan PL, et al. Acquisition of 3-D arterial geome-tries and integration with computational fluid dynamics. Ultrasound Med Biol 2009;35:2069-83. https://doi.org/10.1016/j.ultrasmedbio.2009.06.1099
  40. LaDisa JF Jr, Bowers M, Harmann L, et al. Time-efficient patientspecific quantification of regional carotid artery fluid dynamics and spatial correlation with plaque burden. Med Phys 2010;37:784-92. https://doi.org/10.1118/1.3292631
  41. Marshall I. Computational simulations and experimental studies of 3D phase-contrast imaging of fluid flow in carotid bifurcation geometries. J Magn Reson Imaging 2010;31:928-34. https://doi.org/10.1002/jmri.22096
  42. Groen HC, Simons L, van den Bouwhuijsen QJ, et al. MRI-based qu-antification of outflow boundary conditions for computational fluid dynamics of stenosed human carotid arteries. J Biomech 2010;43:2332-8. https://doi.org/10.1016/j.jbiomech.2010.04.039
  43. Frauenfelder T, Lotfey M, Boehm T, Wildermuth S. Computational fl-uid dynamics: hemodynamic changes in abdominal aortic aneurysm after stent-graft implantation. Cardiovasc Intervent Radiol 2006;29: 613-23. Erratum in: Cardiovasc Intervent Radiol 2006;29:724. https://doi.org/10.1007/s00270-005-0227-5
  44. O'Rourke MJ, McCullough JP. A comparison of the measured and pre-dicted flowfield in a patient-specific model of an abdominal aortic an-eurysm. Proc Inst Mech Eng H 2008;222:737-50. https://doi.org/10.1243/09544119JEIM357
  45. Suh GY, Les AS, Tenforde AS, et al. Quantification of particle resid-ence time in abdominal aortic aneurysms using magnetic resonance imaging and computational fluid dynamics. Ann Biomed Eng 2011;39:864-83. https://doi.org/10.1007/s10439-010-0202-4
  46. Filipovic N, Ivanovic M, Krstajic D, Kojic M. Hemodynamic flow mo-deling through an abdominal aorta aneurysm using data mining tools. IEEE Trans Inf Technol Biomed 2011;15:189-94. https://doi.org/10.1109/TITB.2010.2096541
  47. Karmonik C, Bismuth J, Davies MG, Shah DJ, Younes HK, Lumsden AB. A computational fluid dynamics study pre- and post-stent graft placement in an acute type B aortic dissection. Vasc Endovascular Surg 2011;45:157-64. https://doi.org/10.1177/1538574410389342
  48. Tremmel M, Xiang J, Natarajan SK, et al. Alteration of intra-aneurysmal hemodynamics for flow diversion using enterprise and vision stents. World Neurosurg 2010;74:306-15. https://doi.org/10.1016/j.wneu.2010.05.008
  49. Radaelli AG, Augsburger L, Cebral JR, et al. Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm mo-del: a report on the Virtual Intracranial Stenting Challenge 2007. J Biomech 2008;41:2069-81. https://doi.org/10.1016/j.jbiomech.2008.04.035
  50. Cebral JR, Mut F, Weir J, Putman C. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain an-eurysms. AJNR Am J Neuroradiol 2011;32:145-51. https://doi.org/10.3174/ajnr.A2641
  51. Sforza DM, Lohner R, Putman C, Cebral J. Hemodynamic Analysis of intracranial aneurysms with moving parent arteries: basilar tip aneurysms. Int J Numer Methods Biomed Eng 2010;26:1219-27. https://doi.org/10.1002/cnm.1385
  52. Cebral JR, Mut F, Weir J, Putman CM. Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am J Neuroradiol 2011;32:264-70. https://doi.org/10.3174/ajnr.A2274

피인용 문헌

  1. Preventive Effects of Exenatide on Endothelial Dysfunction Induced by Ischemia-Reperfusion Injury via K ATP Channels vol.32, pp.2, 2012, https://doi.org/10.1161/atvbaha.110.222653
  2. Potential of modeling and simulations of bioengineered devices: Endoprostheses, prostheses and orthoses vol.230, pp.7, 2011, https://doi.org/10.1177/0954411916643343
  3. Parallelization Strategies for Computational Fluid Dynamics Software: State of the Art Review vol.24, pp.2, 2011, https://doi.org/10.1007/s11831-016-9165-4
  4. Mathematical Analysis and Physical Profile of Blalock-Taussig Shunt and Sano Modification Procedure in Hypoplastic Left Heart Syndrome: Review of the Literature and Implications for the Anesthesiologi vol.21, pp.2, 2017, https://doi.org/10.1177/1089253216687857
  5. Lactation in the Human Breast From a Fluid Dynamics Point of View vol.139, pp.1, 2011, https://doi.org/10.1115/1.4034995
  6. Computational Fluid Dynamics Modeling in Aortic Diseases vol.2, pp.2, 2011, https://doi.org/10.22468/cvia.2018.00073
  7. Computational Fluid Dynamics of Vascular Disease in Animal Models vol.140, pp.8, 2011, https://doi.org/10.1115/1.4039678
  8. Innovative Modeling Techniques and 3D Printing in Patients with Left Ventricular Assist Devices: A Bridge from Bench to Clinical Practice vol.8, pp.5, 2019, https://doi.org/10.3390/jcm8050635
  9. Simulation of Crude Palm Oil Dilution in a Palm Oil Mill Using Computational Fluid Dynamics vol.42, pp.9, 2011, https://doi.org/10.1002/ceat.201800648
  10. Measurements of human blood viscoelasticity and thixotropy under steady and transient shear and constitutive modeling thereof vol.63, pp.5, 2011, https://doi.org/10.1122/1.5108737
  11. Thrust Prediction of an Active Flapping Foil in Waves Using CFD vol.7, pp.11, 2019, https://doi.org/10.3390/jmse7110396
  12. Use of 3D rotational angiography to perform computational fluid dynamics and virtual interventions in aortic coarctation vol.95, pp.2, 2011, https://doi.org/10.1002/ccd.28507
  13. Function of arteries and veins in conditions of simulated cardiac arrest vol.11, pp.2, 2021, https://doi.org/10.34172/bi.2021.13
  14. Advances in Non-Invasive Blood Pressure Monitoring vol.21, pp.13, 2011, https://doi.org/10.3390/s21134273
  15. Hemodynamic analysis of hepatic arteries for the early evaluation of hepatic fibrosis in biliary atresia vol.211, pp.None, 2011, https://doi.org/10.1016/j.cmpb.2021.106400
  16. Review of the Development of Hemodynamic Modeling Techniques to Capture Flow Behavior in Arteries Affected by Aneurysm, Atherosclerosis, and Stenting vol.144, pp.4, 2022, https://doi.org/10.1115/1.4053082