DOI QR코드

DOI QR Code

Ultrasonography and the Ultrasound-Based Management of Thyroid Nodules: Consensus Statement and Recommendations

  • Moon, Won-Jin (Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine) ;
  • Baek, Jung-Hwan (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Jung, So-Lyung (Department of Radiology, Seoul St. Mary’s Hospital, The Catholic University of Korea) ;
  • Kim, Dong-Wook (Department of Radiology, Busan Paik Hospital, Inje University College of Medicine) ;
  • Kim, Eun-Kyung (Department of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine) ;
  • Kim, Ji-Young (Department of Radiology, Seoul St. Mary’s Hospital, The Catholic University of Korea) ;
  • Kwak, Jin-Young (Department of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine) ;
  • Lee, Jeong-Hyun (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Lee, Joon-Hyung (Department of Radiology, Dong-A University Medical Center, Dong-A University College of Medicine) ;
  • Lee, Young-Hen (Department of Radiology, Ansan Hospital, Korea University School of Medicine) ;
  • Na, Dong-Gyu (Human Medical Imaging & Intervention Center) ;
  • Park, Jeong-Seon (Department of Radiology, Hanyang University Hospital, Hanyang University College of Medicine) ;
  • Park, Sun-Won (Department of Radiology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine) ;
  • Korean Society of Thyroid Radiology, Korean Society of Thyroid Radiology (Korean Society of Thyroid Radiology) ;
  • Korean Society of Radiology, Korean Society of Radiology (Korean Society of Radiology)
  • Published : 2011.02.01

Abstract

The detection of thyroid nodules has become more common with the widespread use of ultrasonography (US). US is the mainstay for detecting and making the differential diagnosis of thyroid nodules as well as for providing guidance for a biopsy. The Task Force on Thyroid Nodules of the Korean Society of Thyroid Radiology has developed recommendations for the US diagnosis and US-based management of thyroid nodules. The review and recommendations in this report have been based on a comprehensive analysis of the current literature, the results of multicenter studies and from the consensus of experts.

Keywords

References

  1. Harach HR, Franssila KO, Wasenius VM. Occult papillary carcinoma of the thyroid. A "normal" finding in Finland. A systematic autopsy study. Cancer 1985;56:531-538 https://doi.org/10.1002/1097-0142(19850801)56:3<531::AID-CNCR2820560321>3.0.CO;2-3
  2. Brander A, Viikinkoski P, Nickels J, Kivisaari L. Thyroid gland: US screening in a random adult population. Radiology 1991;181:683-687 https://doi.org/10.1148/radiology.181.3.1947082
  3. Tan GH, Gharib H. Thyroid incidentalomas: management approaches to nonpalpable nodules discovered incidentally on thyroid imaging. Ann Intern Med 1997;126:226-231 https://doi.org/10.7326/0003-4819-126-3-199702010-00009
  4. Frates MC, Benson CB, Charboneau JW, Cibas ES, Clark OH, Coleman BG, et al. Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement. Radiology 2005;237:794-800 https://doi.org/10.1148/radiol.2373050220
  5. Nam-Goong IS, Kim HY, Gong G, Lee HK, Hong SJ, Kim WB, et al. Ultrasonography-guided fine-needle aspiration of thyroid incidentaloma: correlation with pathological findings. Clin Endocrinol (Oxf) 2004;60:21-28 https://doi.org/10.1046/j.1365-2265.2003.01912.x
  6. National Cancer Information Center K. 2005 annual report of the Korea central cancer registry [www document]. Available at : http://www.cancer.go.kr last accessed; Oct 2008
  7. Gharib H, Papini E, Valcavi R, Baskin HJ, Crescenzi A, Dottorini ME, et al. American Association of Clinical Endocrinologists and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules. Endocr Pract 2006;12:63-102 https://doi.org/10.4158/EP.12.1.63
  8. American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:1167-1214 https://doi.org/10.1089/thy.2009.0110
  9. Moon WJ, Jung SL, Lee JH, Na DG, Baek JH, Lee YH, et al. Benign and malignant thyroid nodules: US differentiation--multicenter retrospective study. Radiology 2008;247:762-770 https://doi.org/10.1148/radiol.2473070944
  10. Moon WJ, Na DG, Jung SL, Lee JH, Kim J, Kim HS, et al. Recommendations for ultrasound-based management of thyroid nodules. In: 62nd Scientific Assembly of the Korean Radiological Society. Seoul: The Korean Radiological Society, 2006
  11. Brander AE, Viikinkoski VP, Nickels JI, Kivisaari LM. Importance of thyroid abnormalities detected at US screening: a 5-year follow-up. Radiology 2000;215:801-806 https://doi.org/10.1148/radiology.215.3.r00jn07801
  12. Kuma K, Matsuzuka F, Yokozawa T, Miyauchi A, Sugawara M. Fate of untreated benign thyroid nodules: results of long-term follow-up. World J Surg 1994;18:495-498 https://doi.org/10.1007/BF00353745
  13. Alexander EK, Hurwitz S, Heering JP, Benson CB, Frates MC, Doubilet PM, et al. Natural history of benign solid and cystic thyroid nodules. Ann Intern Med 2003;138:315-318 https://doi.org/10.7326/0003-4819-138-4-200302180-00010
  14. Hoang JK, Lee WK, Lee M, Johnson D, Farrell S. US features of thyroid malignancy: pearls and pitfalls. Radiographics 2007;27:847-860 https://doi.org/10.1148/rg.273065038
  15. Papini E, Petrucci L, Guglielmi R, Panunzi C, Rinaldi R, Bacci V, et al. Long-term changes in nodular goiter: a 5-year prospective randomized trial of levothyroxine suppressive therapy for benign cold thyroid nodules. J Clin Endocrinol Metab 1998;83:780-783 https://doi.org/10.1210/jc.83.3.780
  16. Brauer VF, Eder P, Miehle K, Wiesner TD, Hasenclever H, Paschke R. Interobserver variation for ultrasound determination of thyroid nodule volumes. Thyroid 2005;15:1169-1175 https://doi.org/10.1089/thy.2005.15.1169
  17. Chan BK, Desser TS, McDougall IR, Weigel RJ, Jeffrey RB Jr. Common and uncommon sonographic features of papillary thyroid carcinoma. J Ultrasound Med 2003;22:1083-1090 https://doi.org/10.7863/jum.2003.22.10.1083
  18. Watters DA, Ahuja AT, Evans RM, Chick W, King WW, Metreweli C, et al. Role of ultrasound in the management of thyroid nodules. Am J Surg 1992;164:654-657 https://doi.org/10.1016/S0002-9610(05)80728-7
  19. Lee MJ, Kim EK, Kwak JY, Kim MJ. Partially cystic thyroid nodules on ultrasound: probability of malignancy and sonographic differentiation. Thyroid 2009;19:341-346 https://doi.org/10.1089/thy.2008.0250
  20. Hatabu H, Kasagi K, Yamamoto K, Iida Y, Misaki T, Hidaka A, et al. Cystic papillary carcinoma of the thyroid gland: a new sonographic sign. Clin Radiol 1991;43:121-124 https://doi.org/10.1016/S0009-9260(05)81591-0
  21. Bonavita JA, Mayo J, Babb J, Bennett G, Oweity T, Macari M, et al. Pattern recognition of benign nodules at ultrasound of the thyroid: which nodules can be left alone? AJR Am J Roentgenol 2009;193:207-213 https://doi.org/10.2214/AJR.08.1820
  22. Moon WJ, Kwag HJ, Na DG. Are there any specific ultrasound findings of nodular hyperplasia ("leave me alone" lesion) to differentiate it from follicular adenoma? Acta Radiol 2009;50:383-388 https://doi.org/10.1080/02841850902740940
  23. Kim EK, Park CS, Chung WY, Oh KK, Kim DI, Lee JT, et al. New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid. AJR Am J Roentgenol 2002;178:687-691 https://doi.org/10.2214/ajr.178.3.1780687
  24. Alexander EK, Marqusee E, Orcutt J, Benson CB, Frates MC, Doubilet PM, et al. Thyroid nodule shape and prediction of malignancy. Thyroid 2004;14:953-958 https://doi.org/10.1089/thy.2004.14.953
  25. Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney GA. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology 1995;196:123-134 https://doi.org/10.1148/radiology.196.1.7784555
  26. Papini E, Guglielmi R, Bianchini A, Crescenzi A, Taccogna S, Nardi F, et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab 2002;87:1941-1946 https://doi.org/10.1210/jc.87.5.1941
  27. Reading CC, Charboneau JW, Hay ID, Sebo TJ. Sonography of thyroid nodules: a "classic pattern" diagnostic approach. Ultrasound Q 2005;21:157-165 https://doi.org/10.1097/01.ruq.0000174750.27010.68
  28. Khoo ML, Asa SL, Witterick IJ, Freeman JL. Thyroid calcification and its association with thyroid carcinoma. Head Neck 2002;24:651-655 https://doi.org/10.1002/hed.10115
  29. Peccin S, de Castsro JA, Furlanetto TW, Furtado AP, Brasil BA, Czepielewski MA. Ultrasonography: is it useful in the diagnosis of cancer in thyroid nodules? J Endocrinol Invest 2002;25:39-43 https://doi.org/10.1007/BF03343959
  30. Kwak MS, Baek JH, Kim YS, Jeong HJ. Patterns and significance of peripheral calcifications of thyroid tumors seen on ultrasound. J Korean Radiol Soc 2005;53:401-405 https://doi.org/10.3348/jkrs.2005.53.6.401
  31. Yoon DY, Lee JW, Chang SK, Choi CS, Yun EJ, Seo YL, et al. Peripheral calcification in thyroid nodules: ultrasonographic features and prediction of malignancy. J Ultrasound Med 2007;26:1349-1355 https://doi.org/10.7863/jum.2007.26.10.1349
  32. Kim BM, Kim MJ, Kim EK, Kwak JY, Hong SW, Son EJ, et al. Sonographic differentiation of thyroid nodules with eggshell calcifications. J Ultrasound Med 2008;27:1425-1430 https://doi.org/10.7863/jum.2008.27.10.1425
  33. Propper RA, Skolnick ML, Weinstein BJ, Dekker A. The nonspecificity of the thyroid halo sign. J Clin Ultrasound 1980;8:129-132 https://doi.org/10.1002/jcu.1870080206
  34. Lu C, Chang TC, Hsiao YL, Kuo MS. Ultrasonographic findings of papillary thyroid carcinoma and their relation to pathologic changes. J Formos Med Assoc 1994;93:933-938
  35. Tamsel S, Demirpolat G, Erdogan M, Nart D, Karadeniz M, Uluer H, et al. Power Doppler US patterns of vascularity and spectral Doppler US parameters in predicting malignancy in thyroid nodules. Clin Radiol 2007;62:245-251 https://doi.org/10.1016/j.crad.2006.10.003
  36. Moon HJ, Kwak JY, Kim MJ, Son EJ, Kim EK. Can vascularity at power Doppler US help predict thyroid malignancy? Radiology 2010;255:260-269 https://doi.org/10.1148/radiol.09091284
  37. Lyshchik A, Higashi T, Asato R, Tanaka S, Ito J, Mai JJ, et al. Thyroid gland tumor diagnosis at US elastography. Radiology 2005;237:202-211 https://doi.org/10.1148/radiol.2363041248
  38. Kim SJ, Kim EK, Park CS, Chung WY, Oh KK, Yoo HS. Ultrasound-guided fi ne-needle aspiration biopsy in nonpalpable thyroid nodules: is it useful in infracentimetric nodules? Yonsei Med J 2003;44:635-640 https://doi.org/10.3349/ymj.2003.44.4.635
  39. Wienke JR, Chong WK, Fielding JR, Zou KH, Mittelstaedt CA. Sonographic features of benign thyroid nodules: interobserver reliability and overlap with malignancy. J Ultrasound Med 2003;22:1027-1031 https://doi.org/10.7863/jum.2003.22.10.1027
  40. Iannuccilli JD, Cronan JJ, Monchik JM. Risk for malignancy of thyroid nodules as assessed by sonographic criteria: the need for biopsy. J Ultrasound Med 2004;23:1455-1464 https://doi.org/10.7863/jum.2004.23.11.1455
  41. Frates MC, Benson CB, Doubilet PM, Cibas ES, Marqusee E. Can color Doppler sonography aid in the prediction of malignancy of thyroid nodules? J Ultrasound Med 2003;22:127-131 https://doi.org/10.7863/jum.2003.22.2.127
  42. Popowicz B, Klencki M, Lewin' ski A, Słowin' ska-Klencka D. The usefulness of sonographic features in selection of thyroid nodules for biopsy in relation to the nodule's size. Eur J Endocrinol 2009;161:103-111 https://doi.org/10.1530/EJE-09-0022
  43. Ahuja A, Chick W, King W, Metreweli C. Clinical significance of the comet-tail artifact in thyroid ultrasound. J Clin Ultrasound 1996;24:129-133 https://doi.org/10.1002/(SICI)1097-0096(199603)24:3<129::AID-JCU4>3.0.CO;2-J
  44. Kim SH, Kim BS, Jung SL, Lee JW, Yang PS, Kang BJ, et al. Ultrasonographic findings of medullary thyroid carcinoma: a comparison with papillary thyroid carcinoma. Korean J Radiol 2009;10:101-105 https://doi.org/10.3348/kjr.2009.10.2.101
  45. Jeh SK, Jung SL, Kim BS, Lee YS. Evaluating the degree of conformity of papillary carcinoma and follicular carcinoma to the reported ultrasonographic findings of malignant thyroid tumor. Korean J Radiol 2007;8:192-197 https://doi.org/10.3348/kjr.2007.8.3.192
  46. Kim DS, Kim JH, Na DG, Park SH, Kim E, Chang KH, et al. Sonographic features of follicular variant papillary thyroid carcinomas in comparison with conventional papillary thyroid carcinomas. J Ultrasound Med 2009;28:1685-1692 https://doi.org/10.7863/jum.2009.28.12.1685
  47. Mazzaferri EL. Management of a solitary thyroid nodule. N Engl J Med 1993;328:553-559 https://doi.org/10.1056/NEJM199302253280807
  48. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 1994;97:418-428 https://doi.org/10.1016/0002-9343(94)90321-2
  49. Pazaitou-Panayiotou K, Capezzone M, Pacini F. Clinical features and therapeutic implication of papillary thyroid microcarcinoma. Thyroid 2007;17:1085-1092 https://doi.org/10.1089/thy.2007.0005
  50. Baudin E, Travagli JP, Ropers J, Mancusi F, Bruno-Bossio G, Caillou B, et al. Microcarcinoma of the thyroid gland: the Gustave-Roussy Institute experience. Cancer 1998;83:553-559 https://doi.org/10.1002/(SICI)1097-0142(19980801)83:3<553::AID-CNCR25>3.0.CO;2-U
  51. Chow SM, Law SC, Au SK, Mang O, Yau S, Yuen KT, et al. Changes in clinical presentation, management and outcome in 1348 patients with differentiated thyroid carcinoma: experience in a single institute in Hong Kong, 1960-2000. Clin Oncol (R Coll Radiol) 2003;15:329-336 https://doi.org/10.1016/S0936-6555(03)00066-9
  52. Ito Y, Uruno T, Nakano K, Takamura Y, Miya A, Kobayashi K, et al. An observation trial without surgical treatment in patients with papillary microcarcinoma of the thyroid. Thyroid 2003;13:381-387 https://doi.org/10.1089/105072503321669875
  53. Noguchi S, Yamashita H, Murakami N, Nakayama I, Toda M, Kawamoto H. Small carcinomas of the thyroid. A long-term follow-up of 867 patients. Arch Surg 1996;131:187-191 https://doi.org/10.1001/archsurg.1996.01430140077021
  54. Noguchi S, Yamashita H, Uchino S, Watanabe S. Papillary microcarcinoma. World J Surg 2008;32:747-753 https://doi.org/10.1007/s00268-007-9453-0
  55. Kim DW, Lee EJ, Kim SH, Kim TH, Lee SH, Kim DH, et al. Ultrasound-guided fine-needle aspiration biopsy of thyroid nodules: comparison in effi cacy according to nodule size. Thyroid 2009;19:27-31 https://doi.org/10.1089/thy.2008.0106
  56. Mazzaferri EL, Sipos J. Should all patients with subcentimeter thyroid nodules undergo fine-needle aspiration biopsy and preoperative neck ultrasonography to defi ne the extent of tumor invasion? Thyroid 2008;18:597-602 https://doi.org/10.1089/thy.2008.0100
  57. Asanuma K, Kobayashi S, Shingu K, Hama Y, Yokoyama S, Fujimori M, et al. The rate of tumour growth does not distinguish between malignant and benign thyroid nodules. Eur J Surg 2001;167:102-105 https://doi.org/10.1080/110241501750070538
  58. Erdogan MF, Gursoy A, Erdogan G. Natural course of benign thyroid nodules in a moderately iodine-defi cient area. Clin Endocrinol (Oxf) 2006;65:767-771 https://doi.org/10.1111/j.1365-2265.2006.02664.x
  59. Cibas ES, Ali SZ. The Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2009;19:1159-1165 https://doi.org/10.1089/thy.2009.0274
  60. Alexander EK, Heering JP, Benson CB, Frates MC, Doubilet PM, Cibas ES, et al. Assessment of nondiagnostic ultrasoundguided fine needle aspirations of thyroid nodules. J Clin Endocrinol Metab 2002;87:4924-4927 https://doi.org/10.1210/jc.2002-020865
  61. Ogawa Y, Kato Y, Ikeda K, Aya M, Ogisawa K, Kitani K, et al. The value of ultrasound-guided fine-needle aspiration cytology for thyroid nodules: an assessment of its diagnostic potential and pitfalls. Surg Today 2001;31:97-101 https://doi.org/10.1007/s005950170190
  62. Kwak JY, Koo H, Youk JH, Kim MJ, Moon HJ, Son EJ, et al. Value of US correlation of a thyroid nodule with initially benign cytologic results. Radiology 2010;254:292-300 https://doi.org/10.1148/radiol.2541090460
  63. Black WC, Welch HG. Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. N Engl J Med 1993;328:1237-1243 https://doi.org/10.1056/NEJM199304293281706

Cited by

  1. Role of Ultrasound Diagnosis in Assessing and Managing Thyroid Nodules With Inadequate Cytology vol.197, pp.5, 2011, https://doi.org/10.2214/ajr.11.6418
  2. Thermal Ablation for Benign Thyroid Nodules: Radiofrequency and Laser vol.12, pp.5, 2011, https://doi.org/10.3348/kjr.2011.12.5.525
  3. Differentiation between Benign and Malignant Solid Thyroid Nodules Using an US Classification System vol.12, pp.5, 2011, https://doi.org/10.3348/kjr.2011.12.5.559
  4. Comparative Study of US Features, US-guided Fine Needle Aspiration Cytology, and Pathology Results for Eggshell Calcified Thyroid Nodules vol.64, pp.6, 2011, https://doi.org/10.3348/jksr.2011.64.6.531
  5. Real-Time US Diagnosis for Perithyroidal Invasion of Thyroid Malignancy vol.65, pp.1, 2011, https://doi.org/10.3348/jksr.2011.65.1.13
  6. Diagnostic value of antithyroid peroxidase antibody for incidental autoimmune thyroiditis based on histopathologic results vol.42, pp.3, 2011, https://doi.org/10.1007/s12020-012-9695-y
  7. Core-Needle Biopsy Is More Useful Than Repeat Fine-Needle Aspiration in Thyroid Nodules Read as Nondiagnostic or Atypia of Undetermined Significance by the Bethesda System for Reporting Thyroid Cytopa vol.22, pp.5, 2011, https://doi.org/10.1089/thy.2011.0185
  8. Suspicious Ultrasound Characteristics Predict BRAFV600E-Positive Papillary Thyroid Carcinoma vol.22, pp.6, 2011, https://doi.org/10.1089/thy.2011.0274
  9. The Prevalence and Features of Thyroid Pyramidal Lobes as Assessed by Computed Tomography vol.22, pp.2, 2011, https://doi.org/10.1089/thy.2011.0397
  10. Complications encountered in the treatment of benign thyroid nodules with US-guided radiofrequency ablation: a multicenter study. vol.262, pp.1, 2012, https://doi.org/10.1148/radiol.11110416
  11. Symptomatic benign thyroid nodules: efficacy of additional radiofrequency ablation treatment session--prospective randomized study. vol.263, pp.3, 2011, https://doi.org/10.1148/radiol.12111300
  12. Radiofrequency Ablation of Thyroid Nodules: Basic Principles and Clinical Application vol.2012, pp.None, 2012, https://doi.org/10.1155/2012/919650
  13. BRAFMutation Analysis and Sonography as Adjuncts to Fine-Needle Aspiration Cytology of Papillary Thyroid Carcinoma: Their Relationships and Roles vol.198, pp.3, 2011, https://doi.org/10.2214/ajr.11.7185
  14. Ultrasound-Based Diagnostic Classification for Solid and Partially Cystic Thyroid Nodules vol.33, pp.6, 2011, https://doi.org/10.3174/ajnr.a2923
  15. Radiofrequency Ablation of Benign Thyroid Nodules and Recurrent Thyroid Cancers: Consensus Statement and Recommendations vol.13, pp.2, 2012, https://doi.org/10.3348/kjr.2012.13.2.117
  16. Thyroid Incidentaloma Detected by Time-Resolved Magnetic Resonance Angiography at 3T: Prevalence and Clinical Significance vol.13, pp.3, 2011, https://doi.org/10.3348/kjr.2012.13.3.275
  17. Partially Cystic Thyroid Nodules: Ultrasound Findings of Malignancy vol.13, pp.5, 2011, https://doi.org/10.3348/kjr.2012.13.5.530
  18. Mixed Echoic Thyroid Nodules on Ultrasound: Approach to Management vol.53, pp.4, 2011, https://doi.org/10.3349/ymj.2012.53.4.812
  19. Current guidelines for the management of thyroid nodules. vol.18, pp.4, 2011, https://doi.org/10.4158/ep12071.co
  20. Cystic versus predominantly cystic thyroid nodules: efficacy of ethanol ablation and analysis of related factors vol.22, pp.7, 2012, https://doi.org/10.1007/s00330-012-2406-5
  21. Clinical and Ultrasonographic Findings Affecting Nondiagnostic Results upon the Second Fine Needle Aspiration for Thyroid Nodules vol.19, pp.7, 2011, https://doi.org/10.1245/s10434-012-2288-4
  22. Nomogram for selecting thyroid nodules for ultrasound‐guided fine‐needle aspiration biopsy based on a quantification of risk of malignancy vol.35, pp.7, 2011, https://doi.org/10.1002/hed.23075
  23. Study of peripheral BRAFV600E mutation as a possible novel marker for papillary thyroid carcinomas vol.35, pp.11, 2011, https://doi.org/10.1002/hed.23195
  24. Comparison of sample adequacy, pain-scale ratings, and complications associated with ultrasound-guided fine-needle aspiration of thyroid nodules between two radiologists with different levels of exper vol.44, pp.3, 2011, https://doi.org/10.1007/s12020-013-9906-1
  25. Cribriform-Morular Variant of Papillary Thyroid Carcinoma: Ultrasonographic and Clinical Characteristics vol.23, pp.1, 2011, https://doi.org/10.1089/thy.2011.0534
  26. Radiofrequency Ablation of Benign Thyroid Nodules Does Not Affect Thyroid Function in Patients with Previous Lobectomy vol.23, pp.3, 2011, https://doi.org/10.1089/thy.2012.0171
  27. The Prevalence and Features of Thyroid Pyramidal Lobe, Accessory Thyroid, and Ectopic Thyroid as Assessed by Computed Tomography: A Multicenter Study vol.23, pp.1, 2011, https://doi.org/10.1089/thy.2012.0253
  28. Single-Session Treatment of Benign Cystic Thyroid Nodules with Ethanol versus Radiofrequency Ablation: A Prospective Randomized Study vol.269, pp.1, 2013, https://doi.org/10.1148/radiol.13122134
  29. Thyroid Nodules with Initially Nondiagnostic Cytologic Results: The Role of Core-Needle Biopsy vol.268, pp.1, 2013, https://doi.org/10.1148/radiol.13122247
  30. Proposed algorithm for management of patients with thyroid nodules/focal lesions, based on ultrasound (US) and fine-needle aspiration biopsy (FNAB); our own experience vol.6, pp.None, 2011, https://doi.org/10.1186/1756-6614-6-6
  31. Preoperative Ultrasonographic Features of Papillary Thyroid Carcinoma Predict Biological Behavior vol.98, pp.4, 2013, https://doi.org/10.1210/jc.2012-4072
  32. Ultrasonography-guided core needle biopsy for the thyroid nodule: does the procedure hold any benefit for the diagnosis when fine-needle aspiration cytology analysis shows inconclusive results? vol.86, pp.1025, 2011, https://doi.org/10.1259/bjr.20130007
  33. Low malignancy risk of thyroid follicular lesion of undetermined significance in patients from post-endemic areas vol.168, pp.4, 2011, https://doi.org/10.1530/eje-12-0993
  34. Is there a real diagnostic impact of elastosonography and contrast-enhanced ultrasonography in the management of thyroid nodules? vol.14, pp.3, 2011, https://doi.org/10.1631/jzus.b1200106
  35. Image Reporting and Characterization System for Ultrasound Features of Thyroid Nodules: Multicentric Korean Retrospective Study vol.14, pp.1, 2013, https://doi.org/10.3348/kjr.2013.14.1.110
  36. Hyperfunction Thyroid Nodules: Their Risk for Becoming or Being Associated with Thyroid Cancers vol.14, pp.4, 2011, https://doi.org/10.3348/kjr.2013.14.4.643
  37. Indications for Fine Needle Aspiration in Thyroid Nodules vol.28, pp.2, 2011, https://doi.org/10.3803/enm.2013.28.2.81
  38. Natural Course of Benign Thyroid Nodules vol.28, pp.2, 2013, https://doi.org/10.3803/enm.2013.28.2.94
  39. Thyroid Nodule Evaluation: US-FNA and On-Site Cytology Assessment vol.19, pp.4, 2013, https://doi.org/10.4158/ep13045.co
  40. Imaging of Thyroid and Parathyroid Glands vol.48, pp.1, 2013, https://doi.org/10.1053/j.ro.2012.09.003
  41. Thyroid Ultrasound-Guided Fine-Needle Aspiration : A Case Report Emphasizing the Sonographic Features of Benign Versus Malignant Thyroid Nodules vol.18, pp.1, 2011, https://doi.org/10.1097/pcr.0b013e318281c8fa
  42. Thyroid Ultrasound-Guided Fine-Needle Aspiration : A Case Report Discussing Ultrasound Reporting, Documentation, and Microreflectors vol.18, pp.1, 2011, https://doi.org/10.1097/pcr.0b013e318281c90c
  43. Ultrasonographic guideline for thyroid nodules cytology: single institute experience vol.84, pp.2, 2013, https://doi.org/10.4174/jkss.2013.84.2.73
  44. Is Follow-up BRAF V600E Mutation Analysis Helpful in the Differential Diagnosis of Thyroid Nodules with Negative Results on Initial Analysis? vol.8, pp.3, 2013, https://doi.org/10.1371/journal.pone.0058592
  45. Radiofrequency ablation of benign non-functioning thyroid nodules: 4-year follow-up results for 111 patients vol.23, pp.4, 2013, https://doi.org/10.1007/s00330-012-2671-3
  46. The value of ultrasound elastography-guided fine-needle aspiration biopsy of thyroid nodules in reducing nondiagnostic results vol.40, pp.2, 2011, https://doi.org/10.1007/s10396-012-0407-2
  47. Thyroid Nodule with Benign Cytology: Is Clinical Follow-Up Enough? vol.8, pp.5, 2011, https://doi.org/10.1371/journal.pone.0063834
  48. Ultrasound-Based Diagnosis for Solid Thyroid Nodules with the Largest Diameter <5 mm vol.39, pp.7, 2013, https://doi.org/10.1016/j.ultrasmedbio.2013.01.016
  49. Prevalence and Prediction for Malignancy of Additional Thyroid Nodules Coexisting with Proven Papillary Thyroid Microcarcinoma vol.149, pp.1, 2013, https://doi.org/10.1177/0194599813482877
  50. CT Detection of Thyroid Pyramidal Lobe in Preoperative Patients with Thyroid Tumors vol.69, pp.4, 2011, https://doi.org/10.3348/jksr.2013.69.4.269
  51. Incidental thyroid lesions identified by ultrasound in patients with non-thyroidal head and neck cancer. vol.54, pp.10, 2011, https://doi.org/10.1177/0284185113491091
  52. Ethanol ablation of benign thyroid cysts and predominantly cystic thyroid nodules: factors that predict outcome vol.46, pp.1, 2011, https://doi.org/10.1007/s12020-013-0035-7
  53. Ultrasound-guided fine-needle aspiration of benign thyroid cysts or partially cystic thyroid nodules: a preliminary study for factors predicting successful collapse vol.45, pp.1, 2014, https://doi.org/10.1007/s12020-013-9948-4
  54. Differences in Risk of Malignancy and Management Recommendations in Subcategories of Thyroid Nodules with Atypia of Undetermined Significance or Follicular Lesion of Undetermined Significance: The Rol vol.24, pp.3, 2011, https://doi.org/10.1089/thy.2012.0635
  55. Follicular Variant of Papillary Thyroid Carcinoma: Distinct Biologic Behavior Based on Ultrasonographic Features vol.24, pp.4, 2011, https://doi.org/10.1089/thy.2013.0351
  56. Diagnosis of Thyroid Follicular Neoplasm: Fine-Needle Aspiration Versus Core-Needle Biopsy vol.24, pp.11, 2011, https://doi.org/10.1089/thy.2014.0140
  57. Role of core-needle biopsy in thyroid nodules with initially nondiagnostic cytologic results. vol.270, pp.2, 2011, https://doi.org/10.1148/radiol.13131844
  58. Long-Term Ultrasound Follow-Up of Thyroid Colloid Cysts vol.2014, pp.None, 2011, https://doi.org/10.1155/2014/350971
  59. Imaging-Cytology Correlation of Thyroid Nodules with Initially Benign Cytology vol.2014, pp.None, 2011, https://doi.org/10.1155/2014/491508
  60. Early assessment of high-intensity focused ultrasound treatment of benign thyroid nodules by scintigraphic means vol.2, pp.None, 2011, https://doi.org/10.1186/2050-5736-2-18
  61. The use of semi-quantitative ultrasound elastosonography in combination with conventional ultrasonography and contrast-enhanced ultrasonography in the assessment of malignancy risk of thyroid nodules vol.7, pp.None, 2011, https://doi.org/10.1186/s13044-014-0009-8
  62. The Accuracy of Thyroid Nodule Ultrasound to Predict Thyroid Cancer: Systematic Review and Meta-Analysis vol.99, pp.4, 2011, https://doi.org/10.1210/jc.2013-2928
  63. The Role of Thyroid and Parathyroid Metabolism Disorders in the Etiology of Sudden Onset Dizziness vol.20, pp.None, 2011, https://doi.org/10.12659/msm.891305
  64. Incidence and Predictive Factors of Inadequate Fine-Needle Aspirates forBRAFV600EMutation Analysis in Thyroid Nodules vol.202, pp.2, 2011, https://doi.org/10.2214/ajr.12.10291
  65. Preliminary Results of Ex Vivo Multispectral Photoacoustic Imaging in the Management of Thyroid Cancer vol.202, pp.6, 2011, https://doi.org/10.2214/ajr.13.11433
  66. Advances in nonsurgical treatment of benign thyroid nodules vol.10, pp.8, 2011, https://doi.org/10.2217/fon.14.59
  67. Combination Therapy Consisting of Ethanol and Radiofrequency Ablation for Predominantly Cystic Thyroid Nodules vol.35, pp.3, 2011, https://doi.org/10.3174/ajnr.a3701
  68. Thyroid Ultrasonography: Pitfalls and Techniques vol.15, pp.2, 2011, https://doi.org/10.3348/kjr.2014.15.2.267
  69. Ultrasound Assessment of Degrees of Extrathyroidal Extension in Papillary Thyroid Microcarcinoma vol.20, pp.10, 2011, https://doi.org/10.4158/ep14016.or
  70. Combined Value of Virtual Touch Tissue Quantification and Conventional Sonographic Features for Differentiating Benign and Malignant Thyroid Nodules Smaller Than 10 mm vol.33, pp.2, 2014, https://doi.org/10.7863/ultra.33.2.257
  71. Diagnostic Role of Conventional Ultrasonography and Shearwave Elastography in Asymptomatic Patients with Diffuse Thyroid Disease: Initial Experience with 57 Patients vol.55, pp.1, 2011, https://doi.org/10.3349/ymj.2014.55.1.247
  72. Intrathyroidal thymic tissue mimicking a malignant thyroid nodule in a 4-year-old child vol.33, pp.1, 2014, https://doi.org/10.14366/usg.13001
  73. Ultrasound elastography for thyroid nodules: recent advances vol.33, pp.2, 2011, https://doi.org/10.14366/usg.13025
  74. Microwave ablation of benign thyroid nodules vol.10, pp.6, 2014, https://doi.org/10.2217/fon.13.260
  75. Clinical Outcomes in Patients with Non-Diagnostic Thyroid Fine Needle Aspiration Cytology: Usefulness of the Thyroid Core Needle Biopsy vol.21, pp.6, 2014, https://doi.org/10.1245/s10434-013-3365-z
  76. Ultrasound findings of subacute thyroiditis: a single institution retrospective review vol.55, pp.4, 2011, https://doi.org/10.1177/0284185113498721
  77. Detection of Thyroid Pyramidal Lobe by Ultrasound Versus Computed Tomography: A Single-Center Study vol.38, pp.3, 2011, https://doi.org/10.1097/rct.0000000000000054
  78. Atypia of Undetermined Significance in Thyroid Fine-Needle Aspiration Cytology: Prediction of Malignancy by US and Comparison of Methods for Further Management vol.21, pp.7, 2014, https://doi.org/10.1245/s10434-014-3568-y
  79. Vascular and interventional radiology radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers: literature review vol.119, pp.7, 2011, https://doi.org/10.1007/s11547-014-0411-2
  80. BRAF mutation in follicular variant of papillary thyroid carcinoma is associated with unfavourable clinicopathological characteristics and malignant features on ultrasonography vol.81, pp.3, 2014, https://doi.org/10.1111/cen.12433
  81. Incidental Thyroid Lesions Detected on18F-Fluorodeoxyglucose Positron Emission Tomography/CT in Patients with Non-Thyroidal Cancer: Clinical Implications and the Value of Ultrasound vol.71, pp.3, 2011, https://doi.org/10.3348/jksr.2014.71.3.111
  82. Clasificación TI-RADS de los nódulos tiroideos en base a una escala de puntuación modificada con respecto a los criterios ecográficos de malignidad vol.78, pp.3, 2011, https://doi.org/10.1016/j.rard.2014.07.015
  83. Thyroid nodules with initially non-diagnostic, fine-needle aspiration results: comparison of core-needle biopsy and repeated fine-needle aspiration vol.24, pp.11, 2014, https://doi.org/10.1007/s00330-014-3325-4
  84. Papillary thyroid microcarcinoma in a thyroid pyramidal lobe vol.33, pp.4, 2014, https://doi.org/10.14366/usg.14026
  85. Contrast-Enhanced Ultrasound for Differentiation of Benign and Malignant Thyroid Lesions : Meta-analysis vol.151, pp.6, 2011, https://doi.org/10.1177/0194599814555838
  86. Evaluation of cytopathological findings in thyroid nodules with macrocalcification: macrocalcification is not innocent as it seems. vol.58, pp.9, 2011, https://doi.org/10.1590/0004-2730000003602
  87. Care protocol for fine-needle aspiration biopsy of breast and thyroid vol.23, pp.4, 2011, https://doi.org/10.1590/0104-07072014003520012
  88. Association between TNM staging system and histopathological features in patients with papillary thyroid carcinoma vol.48, pp.2, 2011, https://doi.org/10.1007/s12020-014-0362-3
  89. Radiofrequency Ablation for Autonomously Functioning Thyroid Nodules: A Multicenter Study vol.25, pp.1, 2015, https://doi.org/10.1089/thy.2014.0100
  90. Is an Increase in Thyroid Nodule Volume a Risk Factor for Malignancy? vol.25, pp.7, 2011, https://doi.org/10.1089/thy.2014.0567
  91. Web-Based Malignancy Risk Estimation for Thyroid Nodules Using Ultrasonography Characteristics: Development and Validation of a Predictive Model vol.25, pp.12, 2015, https://doi.org/10.1089/thy.2015.0188
  92. Web-Based Malignancy Risk Estimation for Thyroid Nodules Using Ultrasonography Characteristics: Development and Validation of a Predictive Model vol.25, pp.12, 2015, https://doi.org/10.1089/thy.2015.0188
  93. Long-Term Ultrasonography Follow-Up of Thyroid Colloid Cysts at the Health Center: A Single-Center Study vol.2015, pp.None, 2011, https://doi.org/10.1155/2015/324581
  94. Elastography Evaluation of Benign Thyroid Nodules in Patients Affected by Hashimoto's Thyroiditis vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/367054
  95. Ultrasound and cytological diagnostics of thyroid - its proper application in case of coexisting disturbing clinical signs and symptoms, suggestive of active proliferative lesion vol.8, pp.suppl1, 2011, https://doi.org/10.1186/1756-6614-8-s1-a19
  96. Ultrasound Elastography Using Carotid Artery Pulsation in the Differential Diagnosis of Sonographically Indeterminate Thyroid Nodules vol.204, pp.2, 2011, https://doi.org/10.2214/ajr.14.12871
  97. Ultrasound-Guided Fine Needle Aspiration of Thyroid Nodules: A Consensus Statement by the Korean Society of Thyroid Radiology vol.16, pp.2, 2011, https://doi.org/10.3348/kjr.2015.16.2.391
  98. Comparison between Ultrasonography and Computed Tomography for Detecting the Pyramidal Lobe of the Thyroid Gland: A Prospective Multicenter Study vol.16, pp.2, 2011, https://doi.org/10.3348/kjr.2015.16.2.402
  99. Ultrasonography of Various Thyroid Diseases in Children and Adolescents: A Pictorial Essay vol.16, pp.2, 2011, https://doi.org/10.3348/kjr.2015.16.2.419
  100. Sonographic and Cytopathologic Correlation of Papillary Thyroid Carcinoma Variants vol.34, pp.1, 2011, https://doi.org/10.7863/ultra.34.1.1
  101. Benign Lesions That Mimic Thyroid Malignancy on Ultrasound vol.66, pp.1, 2011, https://doi.org/10.1016/j.carj.2014.01.004
  102. Primary Thyroid Lymphoma Has Different Sonographic and Color Doppler Features Compared to Nodular Goiter vol.34, pp.2, 2011, https://doi.org/10.7863/ultra.34.2.317
  103. Is Doppler ultrasound of additional value to gray-scale ultrasound in differentiating malignant and benign thyroid nodules? vol.59, pp.1, 2015, https://doi.org/10.1590/2359-3997000000014
  104. The Roles of Ultrasonography and Ultrasonography-guided Fine-needle Aspiration Cytology in the Planning of Management of Thyroid Cancers vol.23, pp.1, 2011, https://doi.org/10.1016/j.jmu.2014.04.002
  105. Current Guidelines for Fine Needle Aspiration of Thyroid Nodules vol.15, pp.1, 2011, https://doi.org/10.16956/kjes.2015.15.1.1
  106. Thyroid nodule ultrasound: technical advances and future horizons vol.6, pp.2, 2011, https://doi.org/10.1007/s13244-015-0398-9
  107. Iodine nutrition and thyroid diseases in Chengdu, China: an epidemiological study vol.108, pp.5, 2015, https://doi.org/10.1093/qjmed/hcu216
  108. Prediction Table and Nomogram as Tools for Diagnosis of Papillary Thyroid Carcinoma: Combined Analysis of Ultrasonography, Fine-Needle Aspiration Biopsy, and BRAF V600E Mutation vol.94, pp.21, 2011, https://doi.org/10.1097/md.0000000000000760
  109. Sonographically Based Diagnosis of Contralateral Malignancy in Preoperative Patients With Papillary Thyroid Microcarcinoma vol.34, pp.5, 2011, https://doi.org/10.7863/ultra.34.5.789
  110. Inter-Observer Variation in Ultrasound Measurement of the Volume and Diameter of Thyroid Nodules vol.16, pp.3, 2011, https://doi.org/10.3348/kjr.2015.16.3.560
  111. Comparison of two different standards of care in detecting malignant thyroid nodules using thyroid fine-needle aspiration vol.3, pp.3, 2015, https://doi.org/10.3892/mco.2015.491
  112. Ultrasonographic Classification of the Metastases to the Thyroid Gland vol.8, pp.1, 2011, https://doi.org/10.11106/cet.2015.8.1.67
  113. Value of Additional von Kossa Staining in Thyroid Nodules with "Suspicious for Malignancy" on Cytology vol.8, pp.1, 2015, https://doi.org/10.11106/cet.2015.8.1.81
  114. Usefulness of Core Needle Biopsy for Thyroid Nodules with Macrocalcifications: Comparison with Fine-Needle Aspiration vol.25, pp.6, 2011, https://doi.org/10.1089/thy.2014.0596
  115. Sonographic Features of Medullary Thyroid Carcinomas According to Tumor Size : Comparison With Papillary Thyroid Carcinomas vol.34, pp.6, 2011, https://doi.org/10.7863/ultra.34.6.1003
  116. Treatment of Benign Thyroid Nodules: Comparison of Surgery with Radiofrequency Ablation vol.36, pp.7, 2011, https://doi.org/10.3174/ajnr.a4276
  117. A focal marked hypoechogenicity within an isoechoic thyroid nodule: is it a focal malignancy or not? vol.56, pp.7, 2011, https://doi.org/10.1177/0284185114539322
  118. Differentiation of benign and malignant thyroid nodules based on the proportion of sponge-like areas on ultrasonography: imaging-pathologic correlation vol.34, pp.4, 2011, https://doi.org/10.14366/usg.15016
  119. The ultrasonography features of hyalinizing trabecular tumor of the thyroid gland and the role of fine needle aspiration cytology and core needle biopsy in its diagnosis vol.56, pp.9, 2015, https://doi.org/10.1177/0284185114549225
  120. Evaluation of Thyroid Nodules by a Scoring and Categorizing Method Based on Sonographic Features vol.34, pp.12, 2011, https://doi.org/10.7863/ultra.14.11041
  121. Clinical Characteristics and Incidence of Thyroid Nodule in the Male Population for Health Check-up vol.15, pp.4, 2011, https://doi.org/10.16956/kjes.2015.15.4.93
  122. Off-site evaluation of three-dimensional ultrasound for the diagnosis of thyroid nodules: comparison with two-dimensional ultrasound vol.26, pp.10, 2011, https://doi.org/10.1007/s00330-015-4193-2
  123. Follow-up ultrasound may be enough for thyroid nodules from 5 mm to 1 cm in size vol.52, pp.1, 2011, https://doi.org/10.1007/s12020-015-0740-5
  124. Diagnostic value of contrast-enhanced ultrasound in solid thyroid nodules with and without enhancement vol.53, pp.2, 2016, https://doi.org/10.1007/s12020-015-0850-0
  125. Pretracheal tuberculous abcess mimicking a thyroid swelling—A case report vol.28, pp.None, 2016, https://doi.org/10.1016/j.ijscr.2016.10.010
  126. Indeterminate Single Thyroid Nodule: Synergistic Impact of Mutational Markers and Sonographic Features in Triaging Patients to Appropriate Surgery vol.26, pp.3, 2016, https://doi.org/10.1089/thy.2015.0311
  127. Bethesda Categorization of Thyroid Nodule Cytology and Prediction of Thyroid Cancer Type and Prognosis vol.26, pp.2, 2011, https://doi.org/10.1089/thy.2015.0376
  128. The Role of Core-Needle Biopsy as a First-Line Diagnostic Tool for Initially Detected Thyroid Nodules vol.26, pp.3, 2011, https://doi.org/10.1089/thy.2015.0404
  129. Feasibility Study of a Contrast-Enhanced Multi-Detector CT (64 Channels) Protocol for Papillary Thyroid Carcinoma: The Influence of Different Scan Delays on Tumor Conspicuity vol.26, pp.5, 2016, https://doi.org/10.1089/thy.2015.0415
  130. Thyroid Imaging Reporting and Data System Risk Stratification of Thyroid Nodules: Categorization Based on Solidity and Echogenicity vol.26, pp.4, 2016, https://doi.org/10.1089/thy.2015.0460
  131. Subcategorization of Bethesda System Category III by Ultrasonography vol.26, pp.6, 2011, https://doi.org/10.1089/thy.2015.0637
  132. Classifier Model Based on Machine Learning Algorithms: Application to Differential Diagnosis of Suspicious Thyroid Nodules via Sonography vol.207, pp.4, 2011, https://doi.org/10.2214/ajr.15.15813
  133. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations vol.17, pp.3, 2011, https://doi.org/10.3348/kjr.2016.17.3.370
  134. A Multicenter Prospective Validation Study for the Korean Thyroid Imaging Reporting and Data System in Patients with Thyroid Nodules vol.17, pp.5, 2011, https://doi.org/10.3348/kjr.2016.17.5.811
  135. Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: A comparison with radiologist-based assessments : CAD for malignancy of thyroid nodules on vol.43, pp.1, 2011, https://doi.org/10.1118/1.4939060
  136. Comments to the project of Russian clinical practice guidelines for diagnosis and treatment of differentiated thyroid cancer. vol.10, pp.1, 2016, https://doi.org/10.14341/serg2016123-27
  137. Evolutionary features of thyroid cancer in patients with thyroidectomies from 2008 to 2013 in China vol.6, pp.None, 2011, https://doi.org/10.1038/srep28414
  138. Metabolomic analysis of percutaneous fine-needle aspiration specimens of thyroid nodules: Potential application for the preoperative diagnosis of thyroid cancer vol.6, pp.None, 2011, https://doi.org/10.1038/srep30075
  139. Quantitative analysis of echogenicity for patients with thyroid nodules vol.6, pp.None, 2011, https://doi.org/10.1038/srep35632
  140. Thyroid Nodules Detected by Contrast-Enhanced Magnetic Resonance Angiography: Prevalence and Clinical Significance vol.11, pp.2, 2016, https://doi.org/10.1371/journal.pone.0149811
  141. The Diagnostic Performance of Acoustic Radiation Force Impulse Elasticity Imaging to Differentiate Malignant from Benign Thyroid Nodules: Comparison with Conventional B-Mode Sonographic Findings vol.74, pp.2, 2011, https://doi.org/10.3348/jksr.2016.74.2.96
  142. Factors associated with the sensitivity of fine‐needle aspiration cytology for the diagnosis of follicular variant papillary thyroid carcinoma vol.38, pp.suppl1, 2011, https://doi.org/10.1002/hed.24261
  143. Diagnosis of Metastasis to the Thyroid Gland : Comparison of Core-Needle Biopsy and Fine-Needle Aspiration vol.154, pp.4, 2011, https://doi.org/10.1177/0194599816629632
  144. Clinicopathological factors increased the risk of malignancy in thyroid nodules with atypical or follicular lesions of undetermined significance (AUS/FLUS) risk factor of malignancy in thyroid nodule vol.90, pp.4, 2011, https://doi.org/10.4174/astr.2016.90.4.201
  145. Thyroid nodules with minimal cystic changes have a low risk of malignancy vol.35, pp.2, 2016, https://doi.org/10.14366/usg.15070
  146. Modified Core Biopsy Technique to Increase Diagnostic Yields for Well-Circumscribed Indeterminate Thyroid Nodules: A Retrospective Analysis vol.37, pp.6, 2011, https://doi.org/10.3174/ajnr.a4650
  147. The Diagnostic Performance of Thyroid US in Each Category of the Bethesda System for Reporting Thyroid Cytopathology vol.11, pp.6, 2011, https://doi.org/10.1371/journal.pone.0155898
  148. Virtual Touch Tissue Quantification in the Differential Diagnosis of Benign and Malignant Thyroid Nodules vol.74, pp.6, 2011, https://doi.org/10.3348/jksr.2016.74.6.365
  149. Pediatric thyroid nodules: ultrasonographic characteristics and inter-observer variability in prediction of malignancy vol.29, pp.7, 2016, https://doi.org/10.1515/jpem-2015-0242
  150. Radiofrequency ablation of benign thyroid nodules: evaluation of the treatment efficacy using ultrasonography vol.35, pp.3, 2011, https://doi.org/10.14366/usg.15083
  151. Interpretation of thyroid glands in a group of healthy children: real-time ultrasonography elastography study vol.29, pp.8, 2016, https://doi.org/10.1515/jpem-2015-0409
  152. Long-term follow-up ultrasonography after lobectomy in papillary thyroid microcarcinoma patients: A single-center study vol.41, pp.3, 2016, https://doi.org/10.3109/07435800.2015.1137583
  153. Laser, radiofrequency, and ethanol ablation for the management of thyroid nodules vol.23, pp.5, 2016, https://doi.org/10.1097/med.0000000000000282
  154. Thyroid nodule update on diagnosis and management vol.2, pp.None, 2016, https://doi.org/10.1186/s40842-016-0035-7
  155. Malignant-looking thyroid nodules with size reduction: core needle biopsy results vol.35, pp.4, 2011, https://doi.org/10.14366/usg.15082
  156. Impact of Reclassification on Thyroid Nodules with Architectural Atypia: From Non-Invasive Encapsulated Follicular Variant Papillary Thyroid Carcinomas to Non-Invasive Follicular Thyroid Neoplasm with vol.11, pp.12, 2011, https://doi.org/10.1371/journal.pone.0167756
  157. Frequency Domain Analysis of Multiwavelength Photoacoustic Signals for Differentiating Among Malignant, Benign, and Normal Thyroids in an Ex Vivo Study With Human Thyroids : Tissue Characterization Us vol.36, pp.10, 2011, https://doi.org/10.1002/jum.14259
  158. Usefulness of combined use of contrast-enhanced ultrasound and TI-RADS classification for the differentiation of benign from malignant lesions of thyroid nodules vol.27, pp.4, 2011, https://doi.org/10.1007/s00330-016-4508-y
  159. A Computer-Aided Diagnosis System Using Artificial Intelligence for the Diagnosis and Characterization of Thyroid Nodules on Ultrasound: Initial Clinical Assessment vol.27, pp.4, 2011, https://doi.org/10.1089/thy.2016.0372
  160. Ultrasound-Pathology Discordant Nodules on Core-Needle Biopsy: Malignancy Risk and Management Strategy vol.27, pp.5, 2011, https://doi.org/10.1089/thy.2016.0462
  161. Cytology-Ultrasonography Risk-Stratification Scoring System Based on Fine-Needle Aspiration Cytology and the Korean-Thyroid Imaging Reporting and Data System vol.27, pp.7, 2011, https://doi.org/10.1089/thy.2016.0603
  162. Risk Stratification of Thyroid Nodules on Ultrasonography: Current Status and Perspectives vol.27, pp.12, 2017, https://doi.org/10.1089/thy.2016.0654
  163. Detection of Malignancy Among Suspicious Thyroid Nodules <1 cm on Ultrasound with Various Thyroid Image Reporting and Data Systems vol.27, pp.10, 2011, https://doi.org/10.1089/thy.2017.0034
  164. Comparison of Core-Needle Biopsy and Fine-Needle Aspiration for Evaluating Thyroid Incidentalomas Detected by 18 F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: A Pr vol.27, pp.10, 2017, https://doi.org/10.1089/thy.2017.0192
  165. Validation of Three Scoring Risk-Stratification Models for Thyroid Nodules vol.27, pp.12, 2011, https://doi.org/10.1089/thy.2017.0363
  166. Retrospective cytological evaluation of indeterminate thyroid nodules according to the British Thyroid Association 2014 classification and comparison of clinical evaluation and outcomes vol.18, pp.7, 2011, https://doi.org/10.1631/jzus.b1600075
  167. Retrospective cytological evaluation of indeterminate thyroid nodules according to the British Thyroid Association 2014 classification and comparison of clinical evaluation and outcomes vol.18, pp.7, 2011, https://doi.org/10.1631/jzus.b1600075
  168. Ultrasound Elastography: Review of Techniques and Clinical Applications vol.7, pp.5, 2011, https://doi.org/10.7150/thno.18650
  169. Follicular variant of papillary thyroid carcinoma: comparison of ultrasound‐guided core needle biopsy and ultrasound‐guided fine needle aspiration in a multicentre study vol.86, pp.1, 2011, https://doi.org/10.1111/cen.13144
  170. Core‐needle biopsy versus repeat fine‐needle aspiration for thyroid nodules initially read as atypia/follicular lesion of undetermined significance vol.39, pp.2, 2011, https://doi.org/10.1002/hed.24597
  171. First-Line Use of Core Needle Biopsy for High-Yield Preliminary Diagnosis of Thyroid Nodules vol.38, pp.2, 2011, https://doi.org/10.3174/ajnr.a5007
  172. Diagnostic accuracy of the combined use of conventional sonography and sonoelastography in differentiating benign and malignant solitary thyroid nodules vol.53, pp.1, 2011, https://doi.org/10.1016/j.ajme.2016.02.007
  173. Preoperative differentiation between noninvasive follicular thyroid neoplasm with papillary‐like nuclear features (NIFTP) and non‐NIFTP vol.86, pp.3, 2011, https://doi.org/10.1111/cen.13263
  174. PREDICTIVE VALUE OF ULTRASONOLOGICAL CHARACTERISTICS OF A THYROID NODULE IN THE DIAGNOSIS OF MALIGNANCY vol.6, pp.24, 2017, https://doi.org/10.14260/jemds/2017/430
  175. Ultrasonography features of medullary thyroid cancer as predictors of its biological behavior vol.58, pp.4, 2011, https://doi.org/10.1177/0284185116656491
  176. Comparison of fine needle aspiration and non-aspiration cytology for diagnosis of thyroid nodules: A prospective, randomized, and controlled trial vol.66, pp.1, 2011, https://doi.org/10.3233/ch-160222
  177. Features of papillary thyroid microcarcinoma associated with lateral cervical lymph node metastasis vol.86, pp.6, 2017, https://doi.org/10.1111/cen.13322
  178. Efficacy and safety of ultrasound-guided percutaneous polidocanol sclerotherapy in benign predominantly cystic thyroid nodules: a prospective study vol.33, pp.8, 2011, https://doi.org/10.1080/03007995.2017.1325732
  179. Shear Wave Elastography Combining with Conventional Grey Scale Ultrasound Improves the Diagnostic Accuracy in Differentiating Benign and Malignant Thyroid Nodules vol.7, pp.11, 2017, https://doi.org/10.3390/app7111103
  180. Ethanol sclerotherapy of thyroid cysts - an effective alternative to surgery vol.19, pp.4, 2017, https://doi.org/10.36290/int.2017.054
  181. Efficacy and safety of core-needle biopsy in initially detected thyroid nodules via propensity score analysis vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-07924-z
  182. Comparison of the Diagnostic Efficacy of Ultrasound-Guided Core Needle Biopsy With 18- Versus 20-Gauge Needles for Thyroid Nodules : Diagnostic Efficacy of Core Needle Biopsy for Thyroid Nodules vol.37, pp.11, 2011, https://doi.org/10.1002/jum.14614
  183. Distinguishing benign from malignant thyroid nodules using thyroid ultrasonography: utility of adding superb microvascular imaging and elastography vol.123, pp.4, 2011, https://doi.org/10.1007/s11547-017-0839-2
  184. Nodule size as predictive factor of efficacy of radiofrequency ablation in treating autonomously functioning thyroid nodules vol.34, pp.5, 2011, https://doi.org/10.1080/02656736.2018.1430868
  185. Thyroid Incidentalomas Detected on 18 F-Fluorodeoxyglucose Positron Emission Tomography with Computed Tomography: Malignant Risk Stratification and Management Plan vol.28, pp.6, 2011, https://doi.org/10.1089/thy.2017.0560
  186. Diagnostic Performance of Margin Features in Thyroid Nodules in Prediction of Malignancy vol.210, pp.4, 2011, https://doi.org/10.2214/ajr.17.18787
  187. Diagnostic Accuracy of Real-Time Sonography in Differentiating Diffuse Thyroid Disease From Normal Thyroid Parenchyma: A Multicenter Study vol.211, pp.3, 2011, https://doi.org/10.2214/ajr.17.19164
  188. Primary Imaging Test and Appropriate Biopsy Methods for Thyroid Nodules: Guidelines by Korean Society of Radiology and National Evidence-Based Healthcare Collaborating Agency vol.19, pp.4, 2018, https://doi.org/10.3348/kjr.2018.19.4.623
  189. Evaluation of Modified Core-Needle Biopsy in the Diagnosis of Thyroid Nodules vol.19, pp.4, 2018, https://doi.org/10.3348/kjr.2018.19.4.656
  190. Postoperative Neck Ultrasonography Surveillance After Thyroidectomy in Patients With Medullary Thyroid Carcinoma: A Multicenter Study vol.9, pp.None, 2011, https://doi.org/10.3389/fendo.2018.00102
  191. Ultrasonographic Features of Papillary Thyroid Carcinomas According to Their Subtypes vol.9, pp.None, 2011, https://doi.org/10.3389/fendo.2018.00223
  192. Ultrasound Findings in Thyroid Nodules: A Radio–Cytopathologic Correlation vol.26, pp.2, 2018, https://doi.org/10.4103/jmu.jmu_7_17
  193. Trucut/Core Biopsy versus FNAC: Who Wins the Match? Thyroid Lesions and Salivary Gland Lesions: An Overview vol.35, pp.3, 2011, https://doi.org/10.4103/joc.joc_18_18
  194. Utility of a formatted pathologic reporting system in thyroid core needle biopsy: A validation study of 1998 consecutive cases vol.88, pp.1, 2018, https://doi.org/10.1111/cen.13397
  195. Evaluation of Diagnostic Performance of Screening Thyroid Ultrasonography and Imaging Findings of Screening-Detected Thyroid Cancer vol.50, pp.1, 2011, https://doi.org/10.4143/crt.2016.600
  196. Echogenic foci with comet-tail artifact in resected thyroid nodules: Not an absolute predictor of benign disease vol.13, pp.1, 2011, https://doi.org/10.1371/journal.pone.0191505
  197. Contributory Factors to Hemorrhage After Ultrasound-Guided Fine Needle Aspiration of Thyroid Nodules with an Emphasis on Patients Taking Antithrombotic or Anticoagulant Medications vol.15, pp.2, 2018, https://doi.org/10.5812/iranjradiol.57231
  198. SONOGRAPHIC FEATURES OF MULTIFOCAL PAPILLARY THYROID CARCINOMAS vol.24, pp.4, 2011, https://doi.org/10.4158/ep-2017-0205
  199. Factors influencing the outcome from ultrasonography-guided fine-needle aspiration of benign thyroid cysts and partially cystic thyroid nodules: A multicenter study vol.43, pp.2, 2011, https://doi.org/10.1080/07435800.2017.1381973
  200. Guidelines for Primary Imaging Test and Biopsy Methods in the Diagnosis of Thyroid Nodules: Joint Report by the Korean Society of Radiology and National Evidence-Based Healthcare Collaborating Agency vol.79, pp.1, 2011, https://doi.org/10.3348/jksr.2018.79.1.1
  201. Simultaneous ultrasound‑guided percutaneous ethanol injection therapy of two thyroid cysts vol.20, pp.3, 2011, https://doi.org/10.36290/int.2018.027
  202. Role of core needle biopsy as a first-line diagnostic tool for thyroid nodules: a retrospective cohort study vol.37, pp.3, 2011, https://doi.org/10.14366/usg.17041
  203. Investigation of thyroid nodules: A practical algorithm and review of guidelines vol.40, pp.8, 2011, https://doi.org/10.1002/hed.25160
  204. Value of CT added to ultrasonography for the diagnosis of lymph node metastasis in patients with thyroid cancer vol.40, pp.10, 2011, https://doi.org/10.1002/hed.25202
  205. Re-Evaluation of 162 Malignant Thyroid Nodules that were Interpreted as Benign Based on Ultrasound Findings vol.4, pp.4, 2018, https://doi.org/10.1055/a-0732-5795
  206. Significance of contrast-enhanced ultrasonography in differential diagnosis of thyroid nodules vol.97, pp.40, 2011, https://doi.org/10.1097/md.0000000000012688
  207. Sonographic Volumetric Assessment Is a More Accurate Measure Than Maximum Diameter Alone in Papillary Thyroid Cancer vol.2, pp.11, 2011, https://doi.org/10.1210/js.2018-00233
  208. MALIGNANCY IN THYROID NODULES- A RETROSPECTIVE ANALYSIS vol.7, pp.46, 2011, https://doi.org/10.14260/jemds/2018/1109
  209. Diagnostic value of ultrasound features and sex of fetuses in female patients with papillary thyroid microcarcinoma vol.8, pp.None, 2011, https://doi.org/10.1038/s41598-018-26003-5
  210. The diagnostic accuracy of contrast-enhanced ultrasound for the differentiation of benign and malignant thyroid nodules : A PRISMA compliant meta-analysis vol.97, pp.49, 2011, https://doi.org/10.1097/md.0000000000013325
  211. Thyroid Cancer Detection Rate and Associated Risk Factors in Patients with Thyroid Nodules Classified As Bethesda Category III vol.52, pp.4, 2011, https://doi.org/10.2478/raon-2018-0039
  212. Ultrasound image analysis using deep learning algorithm for the diagnosis of thyroid nodules vol.98, pp.15, 2011, https://doi.org/10.1097/md.0000000000015133
  213. Nodules with nonspecific ultrasound pattern according to the 2015 American Thyroid Association malignancy risk stratification system : A comparison to the Thyroid Imaging Reporting and Data System (T vol.98, pp.44, 2011, https://doi.org/10.1097/md.0000000000017657
  214. Oncometabolites as biomarkers in thyroid cancer: a systematic review vol.11, pp.None, 2019, https://doi.org/10.2147/cmar.s188661
  215. A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology vol.20, pp.12, 2019, https://doi.org/10.3348/kjr.2019.0928
  216. Classification of Thyroid Nodules in Ultrasound Images Using Direction-Independent Features Extracted by Two-Threshold Binary Decomposition vol.18, pp.None, 2011, https://doi.org/10.1177/1533033819830748
  217. Retrospective Application of the 2015 American Thyroid Association Guidelines for Ultrasound Classification, Biopsy Indications, and Follow-up Imaging of Thyroid Nodules: Can Improved Reporting Decrea vol.70, pp.1, 2011, https://doi.org/10.1016/j.carj.2018.09.001
  218. Ultrasonographic Multimodality Diagnostic Model of Thyroid Nodules vol.41, pp.2, 2019, https://doi.org/10.1177/0161734618815070
  219. False negative rate of fine‐needle aspiration in thyroid nodules: impact of nodule size and ultrasound pattern vol.41, pp.4, 2011, https://doi.org/10.1002/hed.25530
  220. Thyroid Sonography: Nuclear Medicine Point of View vol.7, pp.4, 2011, https://doi.org/10.1007/s40134-019-0319-7
  221. Accuracy of ultrasonography-guided fine needle aspiration cytology and significance of non-diagnostic cytology in the preoperative detection of thyroid malignancy vol.60, pp.4, 2011, https://doi.org/10.11622/smedj.2018105
  222. Ethanol ablation as a treatment strategy for benign cystic thyroid nodules: a comparison of the ethanol retention and aspiration techniques vol.38, pp.2, 2011, https://doi.org/10.14366/usg.18033
  223. Successful radiofrequency ablation strategies for benign thyroid nodules vol.64, pp.2, 2019, https://doi.org/10.1007/s12020-018-1829-4
  224. Elastography for the evaluation of thyroid nodules in pediatric patients vol.52, pp.3, 2019, https://doi.org/10.1590/0100-3984.2018.0034
  225. Utility of shear wave elastography to detect papillary thyroid carcinoma in thyroid nodules: efficacy of the standard deviation elasticity vol.34, pp.4, 2011, https://doi.org/10.3904/kjim.2016.326
  226. Thyroid core needle biopsy: patients’ pain and satisfaction compared to fine needle aspiration vol.65, pp.2, 2011, https://doi.org/10.1007/s12020-019-01973-2
  227. The Sonographic Findings of Papillary Thyroid Microcarcinomas vol.35, pp.5, 2011, https://doi.org/10.1177/8756479319847649
  228. Long-Term Efficacy of a Single Session of RFA for Benign Thyroid Nodules: A Longitudinal 5-Year Observational Study vol.104, pp.9, 2011, https://doi.org/10.1210/jc.2018-02808
  229. Preoperative Diagnostic Categories of Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features in Thyroid Core Needle Biopsy and Its Impact on Risk of Malignancy vol.30, pp.4, 2011, https://doi.org/10.1007/s12022-019-09590-5
  230. The effectiveness of risk stratification systems in diagnosis of nodular thyroid disorders vol.65, pp.4, 2011, https://doi.org/10.14341/probl10087
  231. Feasibility of Adjustable Electrodes for Radiofrequency Ablation of Benign Thyroid Nodules vol.21, pp.3, 2020, https://doi.org/10.3348/kjr.2019.0724
  232. A Novel Strategy for Single-Session Ultrasound-Guided Radiofrequency Ablation of Large Benign Thyroid Nodules: A Pilot Cohort Study vol.11, pp.None, 2011, https://doi.org/10.3389/fendo.2020.560508
  233. The American Association of Endocrine Surgeons Guidelines for the Definitive Surgical Management of Thyroid Disease in Adults : vol.271, pp.3, 2011, https://doi.org/10.1097/sla.0000000000003580
  234. The relationship of thyroid nodule size on malignancy risk according to histological type of thyroid cancer vol.61, pp.5, 2011, https://doi.org/10.1177/0284185119875642
  235. Differential diagnosis of thyroid nodules through a combination of multiple ultrasonography techniques: A decision-tree model vol.19, pp.6, 2020, https://doi.org/10.3892/etm.2020.8621
  236. Safe and effective percutaneous ethanol injection therapy of 200 thyroid cysts vol.164, pp.2, 2020, https://doi.org/10.5507/bp.2019.007
  237. Partially cystic thyroid nodules on ultrasound: The associated factors for malignancy vol.74, pp.4, 2011, https://doi.org/10.3233/ch-190582
  238. Diagnostic Performance of Four Ultrasound Risk Stratification Systems: A Systematic Review and Meta-Analysis vol.30, pp.8, 2011, https://doi.org/10.1089/thy.2019.0812
  239. Treating thyroid nodules by radiofrequency: is the delivered energy correlated with the volume reduction rate? A pilot study vol.69, pp.3, 2020, https://doi.org/10.1007/s12020-020-02275-8
  240. Preoperative diagnostic categories of fine needle aspiration cytology for histologically proven thyroid follicular adenoma and carcinoma, and Hurthle cell adenoma and carcinoma: Analysis of cause of u vol.15, pp.11, 2011, https://doi.org/10.1371/journal.pone.0241597
  241. The associated factors for spontaneous intranodular hemorrhage of partially cystic thyroid nodules : A retrospective study of 101 thyroid nodules vol.99, pp.51, 2011, https://doi.org/10.1097/md.0000000000023846
  242. Continuous, Large-Volume Hydrodissection to Protect Delicate Structures around the Thyroid throughout the Radiofrequency Ablation Procedure vol.10, pp.6, 2011, https://doi.org/10.1159/000519625
  243. Korean Thyroid Imaging Reporting and Data System: Current Status, Challenges, and Future Perspectives vol.22, pp.9, 2011, https://doi.org/10.3348/kjr.2021.0106
  244. 2021 Korean Thyroid Imaging Reporting and Data System and Imaging-Based Management of Thyroid Nodules: Korean Society of Thyroid Radiology Consensus Statement and Recommendations vol.22, pp.None, 2021, https://doi.org/10.3348/kjr.2021.0713
  245. Symptomatic aseptic necrosis of benign thyroid lesions after microwave ablation: risk factors and clinical significance vol.38, pp.1, 2011, https://doi.org/10.1080/02656736.2021.1930203
  246. A long-term retrospective study of ultrasound-guided microwave ablation of thyroid benign solid nodules vol.38, pp.1, 2011, https://doi.org/10.1080/02656736.2021.1994659
  247. Ultrasonographic Evaluation of the Pyramidal Lobe of the Thyroid Gland in Infants and Children in Western Turkey Between 2018 and 2020 vol.18, pp.1, 2011, https://doi.org/10.5812/iranjradiol.108543
  248. Whirling technique for thyroid fine needle aspiration biopsy: a preliminary study of effectiveness and safety vol.40, pp.1, 2011, https://doi.org/10.14366/usg.20031
  249. Contrast-Enhanced Ultrasound in the Differential Diagnosis and Risk Stratification of ACR TI-RADS Category 4 and 5 Thyroid Nodules With Non-Hypovascular vol.11, pp.None, 2011, https://doi.org/10.3389/fonc.2021.662273
  250. A Scoring System for Assessing the Risk of Malignant Partially Cystic Thyroid Nodules Based on Ultrasound Features vol.11, pp.None, 2021, https://doi.org/10.3389/fonc.2021.731779
  251. Diagnostic performance of core needle biopsy as a first‐line diagnostic tool for thyroid nodules according to ultrasound patterns: Comparison with fine needle aspiration using propensity score m vol.94, pp.3, 2011, https://doi.org/10.1111/cen.14321
  252. Assessment of perinodular stiffness in differentiating malignant from benign thyroid nodules vol.10, pp.5, 2011, https://doi.org/10.1530/ec-21-0034
  253. Determining an energy threshold for optimal volume reduction of benign thyroid nodules treated by radiofrequency ablation vol.31, pp.7, 2011, https://doi.org/10.1007/s00330-020-07532-y
  254. Necessity of Fine-Needle Aspiration in Probably Benign Sonographic Appearance of Thyroid Nodules vol.33, pp.117, 2021, https://doi.org/10.22038/ijorl.2021.53741.2831
  255. Overview of the Ultrasound Classification Systems in the Field of Thyroid Cytology vol.13, pp.13, 2021, https://doi.org/10.3390/cancers13133133
  256. Diagnostic performance of the modified Korean Thyroid Imaging Reporting and Data System for thyroid malignancy according to nodule size: a comparison with five society guidelines vol.40, pp.4, 2011, https://doi.org/10.14366/usg.20148
  257. Efficacy and safety of ultrasound (US)-guided radiofrequency ablation of benign thyroid nodules vol.52, pp.1, 2011, https://doi.org/10.1186/s43055-021-00435-y
  258. Factors related to the absorption rate of benign thyroid nodules after image-guided microwave ablation: a 3-year follow-up vol.39, pp.1, 2011, https://doi.org/10.1080/02656736.2021.1995632