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ON A T-FUNCTION f(x) = x + h(x) WITH A SINGLE
CYCLE ON Z2n

Min Surp Rhee*

Abstract. Invertible transformations over n-bit words are essen-
tial ingredients in many cryptographic constructions. When n is
large (e.g., n = 64) such invertible transformations are usually rep-
resented as a composition of simpler operations such as linear func-
tions, S-P networks, Feistel structures and T-functions. Among
them we study T-functions which are probably invertible and are
very useful in stream ciphers. In this paper we study some condi-
tions on a T-function h(x) such that f(x) = x + h(x) has a single
cycle on Z2n .

1. Introduction

Let Bn = {(xn−1, xn−2, · · · , x0)|xi ∈ B} be the set of all n-tuples of
elements in B, where B = {0, 1}. Then an element of B is called a bit
and an element of Bn is called an n-bit word. An element x of Bn can
be represented as ([x]n−1, [x]n−2, · · · , [x]0), where [x]i−1 is the i-th com-
ponent from the right end of x. In particular, the first component [x]0
of x is called the least bit of x. It is often useful to express an element
([x]n−1, [x]n−2, · · · , [x]0) of Bn as an element

∑n−1
i=0 [x]i2i of Z2n and∑n−1

i=0 [x]i2i of Z2n as ([x]n−1, [x]n−2, · · · , [x]0) of Bn. In this expression
every element of Bn is considered as an element of Z2n and vice versa,
where Z2n is the congruence ring modulo 2n. Consequently Bn is consid-
ered as Z2n and vice versa. For example, an element (0, 1, 1, 0, 1, 0, 1, 1)
of B8 is considered as an element 107 of Z28 = Z256 and 75 of Z28 is
considered as (0, 1, 0, 0, 1, 0, 1, 1) of B8.
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Definition 1.1. For any n-bit words x = (xn−1, xn−2, · · · , x0) and
y = (yn−1, yn−2, · · · , y0) of Bn, we define the following:

(1) x ± y and xy are defined as x ± y mod 2n and xy mod 2n, re-
spectively.

(2) x ⊕ y is defined as (zn−1, zn−2, · · · , z0), where zi = 0 if xi = yi

and zi = 1 if xi 6= yi for each i.
(3) x∨y is defined as (zn−1, zn−2, · · · , z0), where zi = 0 if xi = yi = 0

and zi = 1 otherwise for each i.

A function f : Bn → Bn is said to be a T-function(short for a tri-
angular function) if for each k ∈ {0, 1, 2, · · · , n − 1} the k-th bit of an
n-bit word f(x) depends only on the first k bits of an n-bit word x. In
particular, a function f : Bn → Bn is said to be a parameter if for each
k ∈ {1, 2, · · · , n− 1} the k-th bit of an n-bit word f(x) depends only on
the first k − 1 bits of an n-bit word x.

Example 1.2. Let f(x) = x + (x2 ∨ 1) on Z2n . If x =
∑n−1

i=0 [x]i2i,
then x2 = [x]0 + ([x] 2

1 + [x]0[x]1)22 + · · · , and since [x] 2
i = [x]i we have

[f(x)]0 = [x]0 + [x]0 ∨ 1

[f(x)]1 = [x]1
[f(x)]2 = [x]2 + [x]1 + [x]0[x]1

...

[f(x)]i = [x]i + αi, αi is a function of [x]0, · · · , [x]i−1

...

Hence f(x) is a T-function. But f(x) is not a parameter. Also, for any
given word f(x) = ([f(x)]n−1, · · · , [f(x)]1, [f(x)]0) we can find [x]0, [x]1,
· · · , [x]n−1 in order. Hence f(x) is an invertible T-function.

Let a0, a1, · · · , am, · · · be a sequence of numbers(or words) in Z2n .
If there is the least positive integer l such that ai+l = ai for each non-
negative integer i, then the sequence a0, a1, · · · , am, · · · is said to have
a cycle of period l. In this case we say that a0, a1, · · · , al−1 is called a
cycle of period l. In general ai, ai+1, · · · , ai+l−1 is a cycle of period l for
every nonnegative integer i.

Now, for any function f : Z2n → Z2n , let’s define f i : Z2n → Z2n by

f i(x) =

{
x if i = 0

f(f i−1(x)) if i ≥ 1
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It is easy to show that f i(x) is a T-function for every positive integer
i if f(x) is a T-function. Hence, if f(x) is a bijective T-function then so
does f i(x) for every positive integer i.

Now, let f : Z2n → Z2n be a bijective T-function. An element(or
word) α of Z2n is said to have a cycle of period l in f if l is the
least positive integer such that f l(α) = α. If α has a cycle of pe-
riod l and αi = f i(α), then α generates a sequence which has a cycle
α = α0, α1, · · · , αl−1 of period l. Also, in this case every word αi for
any nonnegative integer i has a cycle of period l. In particular, a word
which has a cycle of period 1 is called a fixed word. That is, an element
α of Z2n is a fixed word if f(α) = α. Also, f is said to have a single
cycle if there is a word which has a cycle of period 2n. In this case every
word of Z2n has a cycle of period 2n.

Example 1.3. Let f(x) = x + (x2 ∨ 1) be a function on Z23 . Then
f(0) = 1, f(1) = 2, f(2) = 7, f(3) = 4, f(4) = 5, f(5) = 6, f(6) = 3 and
f(7) = 0. Hence 0 has a cycle 0, 1, 2, 7 of period 4 and 3 has a cycle
3, 4, 5, 6 of period 4.

Example 1.4. Let f(x) = x + (x2 ∨ 5) be a function on Z23 . Then
f(0) = 5, f(1) = 6, f(2) = 7, f(3) = 0, f(4) = 1, f(5) = 2, f(6) = 3 and
f(7) = 4. Hence 0 has a cycle 0, 5, 2, 7, 4, 1, 6, 3 of period 8. Hence f has
a single cycle.

Example 1.5. Let f(x) = x + (2x + 1)2 be a function on Z23 . Then
f(0) = 1, f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 5, f(5) = 6, f(6) = 7 and
f(7) = 0. Hence 0 has a cycle 0, 1, 2, 3, 4, 5, 6, 7 of period 8. Hence f has
a single cycle.

From above three examples we show that f(x) = x + (x2 ∨ 5) and
f(x) = x + (2x + 1)2 have a single cycle. In [8], the author showed that
the function f(x) = x + (g(x)2 ∨ C) on Z2n has a single cycle if g(x) is
a bijective T-function and C is a constant satisfying [C]0 = [C]2 = 1.

If a word a of Z2n has a cycle of period l, then the l words a0 =
f0(a) = a, a1 = f(a), · · · , ai = f i(a), · · · , al−1 = f l−1(a) are repeated in
the sequence a0, a1, · · · , am, · · · . Since a word of Z2n can be expressed as
n bits, we may consider that a word a of Z2n which has a cycle of period
l in f generates a binary sequence of period n · l. Hence a T-function f
with a single cycle generates a binary sequence of period n · 2n, which
is the longest period in f . Binary sequences of large period enough are
important in a stream cipher. In this paper we study some conditions
on h(x) such that f(x) = x+h(x) has a single cycle on Z2n , where h(x)
is a T-function on Z2n .
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2. Even parameters and T-functions with a single cycle

Let r : Bn → Bn be a parameter. Then from the definition of a
parameter the (n−1)th bit of output r(x) is independent of the (n−1)th
bit of input x. Hence r(x) ≡ r(x + 2n−1) mod 2n for every word x of
Bn. Thus, we can express it as r(x) ≡ r(x + 2n−1) + 2nb(x) mod 2n+1

for some function b : Bn → B. That is, b(x) ≡ 2−n{r(x + 2n−1)− r(x)}
mod 2. Let B[r(x), n] be a function defined by

B[r(x), n] ≡ 2−n
2n−1−1∑

x=0

{r(x + 2n−1)− r(x)} ≡
2n−1−1⊕

x=0

b(x) mod 2.

Then we have the following definition:

Definition 2.1. A parameter r(x) on Z2n is said to be even (resp.,
odd) if B[r(x), n] is 0 (resp., 1).

Example 2.2. Let r(x) = 2x on Z2n . Since r(x + 2n−1) ≡ r(x) +
2n · 1 mod 2n+1, we get b(x) ≡ 2−n{2(x + 2n−1) − 2x} ≡ 1 mod 2 and
B[r(x), n] ≡ 0 mod 2 for all n ≥ 2. So r(x) is an even parameter.

By a similar method as above, r(x) = x2 and r(x) = C are even
parameters for all n ≥ 3 and for all n ≥ 1 on Z2n , respectively, where C
is the constant function. From the definition of an even parameter we
get the following proposition.

Proposition 2.3. Let r1(x) and r2(x) be even parameters on Z2n

for all n ≥ k1 and n ≥ k2, respectively. Then r1(x) + r2(x) is an even
parameter for all n ≥ k, where k =max{k1, k2}.

Example 2.4. Let ri(x) = x2i on Z2n , where i is a nonnegative
integer. Note that ri(x + 2n−1) ≡ (x + 2n−1)2i ≡ r(x) + 2i · x · 2n−1

mod 2n+1 for all n ≥ 3 and b(x) = [i]0 · [x]0. Hence ri(x) is an even
parameter for all n ≥ 3. By Proposition 2.3 r(x) =

∑m
i=0 airi(x) is an

even parameter for all n ≥ 3. That is, if g(x) is a polynomial on Z2n ,
then g(x2) is an even parameter for all n ≥ 3.

Let g(x) = amxm + am−1x
m−1 + · · · + a1x + a0 be a polynomial on

Zpn , where p is a prime, n ≥ 1 and m ≥ 1. Then the polynomial

mamxm−1 + (m− 1)am−1x
m−2 + · · ·+ 2a2x + a1

is called the formal derivative of g(x) and is denoted by g′(x).
For example, if g(x) ≡ x4 + 3x2 + x + 3 mod 22, then g′(x) ≡ 2x + 1

mod 22. Now, we show that g(x)2 is an even parameter if g(x) is a
polynomial.
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Theorem 2.5. Let g(x) = amxm + am−1x
m−1 + · · ·+ a1x + a0 be a

polynomial on Z2n . Then g(x)2 is an even parameter for all n ≥ 3.

Proof. Note

g(x + 2n−1) ≡ am(x + 2n−1)m + am−1(x + 2n−1)m−1+

· · ·+ a2(x + 2n−1)2 + a1(x + 2n−1) + a0 mod2n+1

≡ am[xm + m · xm−1 · 2n−1]

+ am−1[xm−1 + (m− 1) · xm−2 · 2n−1]

+ · · ·+ a2[x2 + 2 · x · 2n−1]

+ a1[x + 2n−1] + a0 mod 2n+1

≡ g(x) + g′(x) · 2n−1 mod 2n+1.

for every integer n ≥ 3. Hence

g(x + 2n−1)2 − g(x)2 ≡ {g(x) + g′(x)2n−1}2 − g(x)2 mod 2n+1

≡ g(x)g′(x) · 2n mod 2n+1.

for every integer n ≥ 3. Since the degree of g(x)g′(x) ≤ 2m− 1, we may
let g(x)g′(x) = b2m−1x

2m−1 + · · ·+ b2x
2 + b1x + b0. Then

B[g(x)2, n] ≡ 2−n
2n−1−1∑

x=0

{g(x + 2n−1)2 − g(x)2} mod 2

≡
2n−1−1∑

x=0

g(x)g′(x) mod 2

≡
2n−1−1∑

x=0

{b2m−1x
2m−1 + · · ·+ b2x

2 + b1x + b0} mod 2

≡
2n−1−1∑

x=0

[b2m−1 + · · ·+ b2 + b1]0[x]0 + [b0] mod 2

≡
2n−1−1∑

x=0

{α[x]0 + [b0]0} mod 2

≡ 0 mod 2,

for every integer n ≥ 3, where α = [b2m−1 + · · · + b2 + b1]0 is a mul-
tiplication parameter. Therefore, g(x)2 is an even parameter for every
integer n ≥ 3.
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Proposition 2.6. Let f(x) = ax + b be a polynomial on Z2n . Then
g(x) has a single cycle on Z2n if and only if a ≡ 1 mod 4 and b ≡ 1 mod
2.

Proof. The proof follows from [7].

If f(x) has a single cycle on Z2n , then by definition of a single cycle
it has a single cycle on Z2k for every k ≤ n. So we have following two
propositions.

Proposition 2.7. Let f(x) = x + g(x)2 be a T-function on Z2n ,
where g(x) = 2q(x)+1 for some T-function q(x) on Z2n . Then f(x) has
a single cycle for all n ≤ 3.

Proof. Since g(x) ≡ 1 mod 2 for every element x of Z2n we get g(x)2 =
1 for every element x of Z23 . Hence f(x) = x + 1 for every element x
of Z23 . So by Proposition 2.6 f(x) has a single cycle on Z23 . Therefore
f(x) has a single cycle on Z2n for all n ≤ 3.

Proposition 2.8. Let f(x) = x + (g(x)2 ∨ C) be a T-function on
Z2n , where g(x) is a function on Z2n and C is a constant such that
[C]0 = [C]2 = 1. Then f(x) has a single cycle for all n ≤3.

Proof. If C is a constant such that [C]0 = [C]2 = 1, then C ≡ 5 mod
8 or C ≡ 7 mod 8. Note that g(x)2 = 0, g(x)2 = 1 or g(x)2 = 4 for every
element x of Z23 . Hence g(x)2 ∨ C = C for every element x of Z23 . So
by Proposition 2.6 f(x) = x + C has a single cycle on Z23 . Therefore
f(x) has a single cycle on Z2n for all n ≤3.

Proposition 2.9. Let r(x) be a parameter and f(x) be a function
defined by f(x) = x + r(x). Let Ne be a positive integer such that f(x)
has a single cycle modulo 2Ne . Then f(x) has a single cycle modulo 2n

for all n if and only if r(x) is an even parameter for all n ≥ Ne.

Proof. The proof may be found in [6].

Theorem 2.10. Let f(x) = x + h(x) be a function on Z2n . Suppose
that h(x) satisfies one of following forms:

(1) {2g(x) + 1}2 for every T-function g(x) on Z2n .
(2) g(x)2 ∨ C for every bijective T-function g(x) on Z2n and C is a

constant such that [C]0 = [C]2 = 1.
(3) g(x)2 ∨ C for every polynomial g(x) on Z2n and C is a constant

such that [C]0 = [C]2 = 1.
Then f(x) has a single cycle on Z2n for all n.
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Proof. Suppose that (1) holds. Then it follows from Proposition 2.7
that f(x) has a single cycle for all n ≤3. Also, by Theorem 2.5 g(x)2

is an even parameter for all n ≥3. Hence by Proposition 2.9 f(x) has a
single cycle on Z2n for all n.

Suppose that (2) holds. Then the proof follows from [8].
Finally, suppose that (3) holds. Then it follows from Proposition 2.8

that f(x) has a single cycle for all n ≤3. Also, by Theorem 2.5 g(x)2 is
an even parameter for all n ≥3 and so g(x)2 ∨ C is an even parameter
for all n ≥3. Hence by Proposition 2.9 f(x) has a single cycle on Z2n

for all n.

Corollary 2.11. The function f(x) = x+(x2∨C) has a single cycle
on Z2n for all n if and only if C is a constant such that [C]0 = [C]2 = 1.

Proof. If C is a constant such that [C]0 = [C]2 = 1, it is a special case
of g(x) = x in Theorem 2.10. Conversely, suppose that C is a constant
such that [C]0 = 0 or [C]2 = 0. Consider f(x) = x + (x2 ∨ C) on Z23

such that [C]0 = 0 or [C]2 = 0. If [C]0 = 0, then f(x) is not bijective
since f(x) ≡ 0 mod 2 for every x of Z23 . Hence f(x) has no single
cycle on Z23 . If [C]2 = 0, there are only two cases on Z23 : C = 1 and
C = 3. By simple calculation we can show that f(x) has no single cycle
on Z23 . Thus f(x) has no single cycle on Z2n . Therefore, Corollary 2.11
holds.

Example 2.12. Let g(x) = x + (2x2 + 1)2 and h(x) = x + ((x2 + x +
1)2 ∨ 5) be polynomials of degree 2. Then by Theorem 2.10 g(x) and
h(x) have a single cycle modulo Z23 . Since (2x2+1)2 and (x2+x+1)2∨1
are even parameters all n ≥3, g(x) and h(x) have a single cycle modulo
2n for all n.
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