ON A T-FUNCTION $f(x)=x+h(x)$ WITH A SINGLE

CYCLE ON $\mathbb{Z}_{2^{n}}$

Min Surp Rhee*

Abstract

Invertible transformations over n-bit words are essential ingredients in many cryptographic constructions. When n is large (e.g., $n=64$) such invertible transformations are usually represented as a composition of simpler operations such as linear functions, S-P networks, Feistel structures and T-functions. Among them we study T-functions which are probably invertible and are very useful in stream ciphers. In this paper we study some conditions on a T-function $h(x)$ such that $f(x)=x+h(x)$ has a single cycle on $\mathbb{Z}_{2^{n}}$.

1. Introduction

Let $\mathbb{B}^{n}=\left\{\left(x_{n-1}, x_{n-2}, \cdots, x_{0}\right) \mid x_{i} \in \mathbb{B}\right\}$ be the set of all n-tuples of elements in \mathbb{B}, where $\mathbb{B}=\{0,1\}$. Then an element of \mathbb{B} is called a bit and an element of \mathbb{B}^{n} is called an n-bit word. An element x of \mathbb{B}^{n} can be represented as $\left([x]_{n-1},[x]_{n-2}, \cdots,[x]_{0}\right)$, where $[x]_{i-1}$ is the i-th component from the right end of x. In particular, the first component $[x]_{0}$ of x is called the least bit of x. It is often useful to express an element $\left([x]_{n-1},[x]_{n-2}, \cdots,[x]_{0}\right)$ of \mathbb{B}^{n} as an element $\sum_{i=0}^{n-1}[x]_{i} 2^{i}$ of $\mathbb{Z}_{2^{n}}$ and $\sum_{i=0}^{n-1}[x]_{i} 2^{i}$ of $\mathbb{Z}_{2^{n}}$ as $\left([x]_{n-1},[x]_{n-2}, \cdots,[x]_{0}\right)$ of \mathbb{B}^{n}. In this expression every element of \mathbb{B}^{n} is considered as an element of $\mathbb{Z}_{2^{n}}$ and vice versa, where $\mathbb{Z}_{2^{n}}$ is the congruence ring modulo 2^{n}. Consequently \mathbb{B}^{n} is considered as $\mathbb{Z}_{2^{n}}$ and vice versa. For example, an element ($0,1,1,0,1,0,1,1$) of \mathbb{B}^{8} is considered as an element 107 of $\mathbb{Z}_{2^{8}}=\mathbb{Z}_{256}$ and 75 of $\mathbb{Z}_{2^{8}}$ is considered as $(0,1,0,0,1,0,1,1)$ of \mathbb{B}^{8}.

[^0]Definition 1.1. For any n-bit words $x=\left(x_{n-1}, x_{n-2}, \cdots, x_{0}\right)$ and $y=\left(y_{n-1}, y_{n-2}, \cdots, y_{0}\right)$ of \mathbb{B}^{n}, we define the following:
(1) $x \pm y$ and $x y$ are defined as $x \pm y \bmod 2^{n}$ and $x y \bmod 2^{n}$, respectively.
(2) $x \oplus y$ is defined as $\left(z_{n-1}, z_{n-2}, \cdots, z_{0}\right)$, where $z_{i}=0$ if $x_{i}=y_{i}$ and $z_{i}=1$ if $x_{i} \neq y_{i}$ for each i.
(3) $x \vee y$ is defined as $\left(z_{n-1}, z_{n-2}, \cdots, z_{0}\right)$, where $z_{i}=0$ if $x_{i}=y_{i}=0$ and $z_{i}=1$ otherwise for each i.

A function $f: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$ is said to be a T-function(short for a triangular function) if for each $k \in\{0,1,2, \cdots, n-1\}$ the k-th bit of an n-bit word $f(x)$ depends only on the first k bits of an n-bit word x. In particular, a function $f: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$ is said to be a parameter if for each $k \in\{1,2, \cdots, n-1\}$ the k-th bit of an n-bit word $f(x)$ depends only on the first $k-1$ bits of an n-bit word x.

Example 1.2. Let $f(x)=x+\left(x^{2} \vee 1\right)$ on $\mathbb{Z}_{2^{n}}$. If $x=\sum_{i=0}^{n-1}[x]_{i} 2^{i}$, then $x^{2}=[x]_{0}+\left([x]_{1}^{2}+[x]_{0}[x]_{1}\right) 2^{2}+\cdots$, and since $[x]_{i}^{2}=[x]_{i}$ we have

$$
\begin{aligned}
{[f(x)]_{0} } & =[x]_{0}+[x]_{0} \vee 1 \\
{[f(x)]_{1} } & =[x]_{1} \\
{[f(x)]_{2} } & =[x]_{2}+[x]_{1}+[x]_{0}[x]_{1}
\end{aligned}
$$

$$
[f(x)]_{i}=[x]_{i}+\alpha_{i}, \alpha_{i} \text { is a function of }[x]_{0}, \cdots,[x]_{i-1}
$$

Hence $f(x)$ is a T-function. But $f(x)$ is not a parameter. Also, for any given word $f(x)=\left([f(x)]_{n-1}, \cdots,[f(x)]_{1},[f(x)]_{0}\right)$ we can find $[x]_{0},[x]_{1}$, $\cdots,[x]_{n-1}$ in order. Hence $f(x)$ is an invertible T-function.

Let $a_{0}, a_{1}, \cdots, a_{m}, \cdots$ be a sequence of numbers(or words) in $\mathbb{Z}_{2^{n}}$. If there is the least positive integer l such that $a_{i+l}=a_{i}$ for each nonnegative integer i, then the sequence $a_{0}, a_{1}, \cdots, a_{m}, \cdots$ is said to have a cycle of period l. In this case we say that $a_{0}, a_{1}, \cdots, a_{l-1}$ is called a cycle of period l. In general $a_{i}, a_{i+1}, \cdots, a_{i+l-1}$ is a cycle of period l for every nonnegative integer i.

Now, for any function $f: \mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2^{n}}$, let's define $f^{i}: \mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2^{n}}$ by

$$
f^{i}(x)= \begin{cases}x & \text { if } i=0 \\ f\left(f^{i-1}(x)\right) & \text { if } i \geq 1\end{cases}
$$

It is easy to show that $f^{i}(x)$ is a T -function for every positive integer i if $f(x)$ is a T-function. Hence, if $f(x)$ is a bijective T-function then so does $f^{i}(x)$ for every positive integer i.

Now, let $f: \mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2^{n}}$ be a bijective T-function. An element(or word) α of $\mathbb{Z}_{2^{n}}$ is said to have a cycle of period l in f if l is the least positive integer such that $f^{l}(\alpha)=\alpha$. If α has a cycle of period l and $\alpha_{i}=f^{i}(\alpha)$, then α generates a sequence which has a cycle $\alpha=\alpha_{0}, \alpha_{1}, \cdots, \alpha_{l-1}$ of period l. Also, in this case every word α_{i} for any nonnegative integer i has a cycle of period l. In particular, a word which has a cycle of period 1 is called a fixed word. That is, an element α of $\mathbb{Z}_{2^{n}}$ is a fixed word if $f(\alpha)=\alpha$. Also, f is said to have a single cycle if there is a word which has a cycle of period 2^{n}. In this case every word of $\mathbb{Z}_{2^{n}}$ has a cycle of period 2^{n}.

Example 1.3. Let $f(x)=x+\left(x^{2} \vee 1\right)$ be a function on $\mathbb{Z}_{2^{3}}$. Then $f(0)=1, f(1)=2, f(2)=7, f(3)=4, f(4)=5, f(5)=6, f(6)=3$ and $f(7)=0$. Hence 0 has a cycle $0,1,2,7$ of period 4 and 3 has a cycle $3,4,5,6$ of period 4 .

Example 1.4. Let $f(x)=x+\left(x^{2} \vee 5\right)$ be a function on $\mathbb{Z}_{2^{3}}$. Then $f(0)=5, f(1)=6, f(2)=7, f(3)=0, f(4)=1, f(5)=2, f(6)=3$ and $f(7)=4$. Hence 0 has a cycle $0,5,2,7,4,1,6,3$ of period 8. Hence f has a single cycle.

Example 1.5. Let $f(x)=x+(2 x+1)^{2}$ be a function on $\mathbb{Z}_{2^{3}}$. Then $f(0)=1, f(1)=2, f(2)=3, f(3)=4, f(4)=5, f(5)=6, f(6)=7$ and $f(7)=0$. Hence 0 has a cycle $0,1,2,3,4,5,6,7$ of period 8 . Hence f has a single cycle.

From above three examples we show that $f(x)=x+\left(x^{2} \vee 5\right)$ and $f(x)=x+(2 x+1)^{2}$ have a single cycle. In [8], the author showed that the function $f(x)=x+\left(g(x)^{2} \vee C\right)$ on $\mathbb{Z}_{2^{n}}$ has a single cycle if $g(x)$ is a bijective T-function and C is a constant satisfying $[C]_{0}=[C]_{2}=1$.

If a word a of $\mathbb{Z}_{2^{n}}$ has a cycle of period l, then the l words $a_{0}=$ $f^{0}(a)=a, a_{1}=f(a), \cdots, a_{i}=f^{i}(a), \cdots, a_{l-1}=f^{l-1}(a)$ are repeated in the sequence $a_{0}, a_{1}, \cdots, a_{m}, \cdots$. Since a word of $\mathbb{Z}_{2^{n}}$ can be expressed as n bits, we may consider that a word a of $\mathbb{Z}_{2^{n}}$ which has a cycle of period l in f generates a binary sequence of period $n \cdot l$. Hence a T-function f with a single cycle generates a binary sequence of period $n \cdot 2^{n}$, which is the longest period in f. Binary sequences of large period enough are important in a stream cipher. In this paper we study some conditions on $h(x)$ such that $f(x)=x+h(x)$ has a single cycle on $\mathbb{Z}_{2^{n}}$, where $h(x)$ is a T -function on $\mathbb{Z}_{2^{n}}$.

2. Even parameters and T-functions with a single cycle

Let $r: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$ be a parameter. Then from the definition of a parameter the $(n-1)$ th bit of output $r(x)$ is independent of the $(n-1)$ th bit of input x. Hence $r(x) \equiv r\left(x+2^{n-1}\right) \bmod 2^{n}$ for every word x of \mathbb{B}^{n}. Thus, we can express it as $r(x) \equiv r\left(x+2^{n-1}\right)+2^{n} b(x) \bmod 2^{n+1}$ for some function $b: \mathbb{B}^{n} \rightarrow \mathbb{B}$. That is, $b(x) \equiv 2^{-n}\left\{r\left(x+2^{n-1}\right)-r(x)\right\}$ $\bmod 2$. Let $\mathbb{B}[r(x), n]$ be a function defined by

$$
\mathbb{B}[r(x), n] \equiv 2^{-n} \sum_{x=0}^{2^{n-1}-1}\left\{r\left(x+2^{n-1}\right)-r(x)\right\} \equiv \bigoplus_{x=0}^{2^{n-1}-1} b(x) \bmod 2
$$

Then we have the following definition:
Definition 2.1. A parameter $r(x)$ on $\mathbb{Z}_{2^{n}}$ is said to be even (resp., odd) if $\mathbb{B}[r(x), n]$ is 0 (resp., 1).

Example 2.2. Let $r(x)=2 x$ on $\mathbb{Z}_{2^{n}}$. Since $r\left(x+2^{n-1}\right) \equiv r(x)+$ $2^{n} \cdot 1 \bmod 2^{n+1}$, we get $b(x) \equiv 2^{-n}\left\{2\left(x+2^{n-1}\right)-2 x\right\} \equiv 1 \bmod 2$ and $\mathbb{B}[r(x), n] \equiv 0 \bmod 2$ for all $n \geq 2$. So $r(x)$ is an even parameter.

By a similar method as above, $r(x)=x^{2}$ and $r(x)=C$ are even parameters for all $n \geq 3$ and for all $n \geq 1$ on $\mathbb{Z}_{2^{n}}$, respectively, where C is the constant function. From the definition of an even parameter we get the following proposition.

Proposition 2.3. Let $r_{1}(x)$ and $r_{2}(x)$ be even parameters on $\mathbb{Z}_{2^{n}}$ for all $n \geq k_{1}$ and $n \geq k_{2}$, respectively. Then $r_{1}(x)+r_{2}(x)$ is an even parameter for all $n \geq k$, where $k=\max \left\{k_{1}, k_{2}\right\}$.

ExAmple 2.4. Let $r_{i}(x)=x^{2 i}$ on $\mathbb{Z}_{2^{n}}$, where i is a nonnegative integer. Note that $r_{i}\left(x+2^{n-1}\right) \equiv\left(x+2^{n-1}\right)^{2 i} \equiv r(x)+2 i \cdot x \cdot 2^{n-1}$ $\bmod 2^{n+1}$ for all $n \geq 3$ and $b(x)=[i]_{0} \cdot[x]_{0}$. Hence $r_{i}(x)$ is an even parameter for all $n \geq 3$. By Proposition $2.3 r(x)=\sum_{i=0}^{m} a_{i} r_{i}(x)$ is an even parameter for all $n \geq 3$. That is, if $g(x)$ is a polynomial on $\mathbb{Z}_{2^{n}}$, then $g\left(x^{2}\right)$ is an even parameter for all $n \geq 3$.

Let $g(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0}$ be a polynomial on $\mathbb{Z}_{p^{n}}$, where p is a prime, $n \geq 1$ and $m \geq 1$. Then the polynomial

$$
m a_{m} x^{m-1}+(m-1) a_{m-1} x^{m-2}+\cdots+2 a_{2} x+a_{1}
$$

is called the formal derivative of $g(x)$ and is denoted by $g^{\prime}(x)$.
For example, if $g(x) \equiv x^{4}+3 x^{2}+x+3 \bmod 2^{2}$, then $g^{\prime}(x) \equiv 2 x+1$ $\bmod 2^{2}$. Now, we show that $g(x)^{2}$ is an even parameter if $g(x)$ is a polynomial.

THEOREM 2.5. Let $g(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0}$ be a polynomial on $\mathbb{Z}_{2^{n}}$. Then $g(x)^{2}$ is an even parameter for all $n \geq 3$.

Proof. Note

$$
\begin{aligned}
g\left(x+2^{n-1}\right) \equiv & a_{m}\left(x+2^{n-1}\right)^{m}+a_{m-1}\left(x+2^{n-1}\right)^{m-1}+ \\
& \cdots+a_{2}\left(x+2^{n-1}\right)^{2}+a_{1}\left(x+2^{n-1}\right)+a_{0} \bmod 2^{n+1} \\
\equiv & a_{m}\left[x^{m}+m \cdot x^{m-1} \cdot 2^{n-1}\right] \\
& +a_{m-1}\left[x^{m-1}+(m-1) \cdot x^{m-2} \cdot 2^{n-1}\right] \\
& +\cdots+a_{2}\left[x^{2}+2 \cdot x \cdot 2^{n-1}\right] \\
& +a_{1}\left[x+2^{n-1}\right]+a_{0} \bmod 2^{n+1} \\
\equiv & g(x)+g^{\prime}(x) \cdot 2^{n-1} \bmod 2^{n+1}
\end{aligned}
$$

for every integer $n \geq 3$. Hence

$$
\begin{aligned}
g\left(x+2^{n-1}\right)^{2}-g(x)^{2} & \equiv\left\{g(x)+g^{\prime}(x) 2^{n-1}\right\}^{2}-g(x)^{2} \bmod 2^{n+1} \\
& \equiv g(x) g^{\prime}(x) \cdot 2^{n} \bmod 2^{n+1}
\end{aligned}
$$

for every integer $n \geq 3$. Since the degree of $g(x) g^{\prime}(x) \leq 2 m-1$, we may let $g(x) g^{\prime}(x)=b_{2 m-1} x^{2 m-1}+\cdots+b_{2} x^{2}+b_{1} x+b_{0}$. Then

$$
\begin{aligned}
\mathbb{B}\left[g(x)^{2}, n\right] & \equiv 2^{-n} \sum_{x=0}^{2^{n-1}-1}\left\{g\left(x+2^{n-1}\right)^{2}-g(x)^{2}\right\} \bmod 2 \\
& \equiv \sum_{x=0}^{2^{n-1}-1} g(x) g^{\prime}(x) \bmod 2 \\
& \equiv \sum_{x=0}^{2^{n-1}-1}\left\{b_{2 m-1} x^{2 m-1}+\cdots+b_{2} x^{2}+b_{1} x+b_{0}\right\} \bmod 2 \\
& \equiv \sum_{x=0}^{2^{n-1}-1}\left[b_{2 m-1}+\cdots+b_{2}+b_{1}\right]_{0}[x]_{0}+\left[b_{0}\right] \bmod 2 \\
& \equiv \sum_{x=0}^{2^{n-1}-1}\left\{\alpha[x]_{0}+\left[b_{0}\right]_{0}\right\} \bmod 2 \\
& \equiv 0 \bmod 2
\end{aligned}
$$

for every integer $n \geq 3$, where $\alpha=\left[b_{2 m-1}+\cdots+b_{2}+b_{1}\right]_{0}$ is a multiplication parameter. Therefore, $g(x)^{2}$ is an even parameter for every integer $n \geq 3$.

Proposition 2.6. Let $f(x)=a x+b$ be a polynomial on $\mathbb{Z}_{2^{n}}$. Then $g(x)$ has a single cycle on $\mathbb{Z}_{2^{n}}$ if and only if $a \equiv 1 \bmod 4$ and $b \equiv 1 \bmod$ 2.

Proof. The proof follows from [7].
If $f(x)$ has a single cycle on $\mathbb{Z}_{2^{n}}$, then by definition of a single cycle it has a single cycle on $\mathbb{Z}_{2^{k}}$ for every $k \leq n$. So we have following two propositions.

Proposition 2.7. Let $f(x)=x+g(x)^{2}$ be a T-function on $\mathbb{Z}_{2^{n}}$, where $g(x)=2 q(x)+1$ for some T-function $q(x)$ on $\mathbb{Z}_{2^{n}}$. Then $f(x)$ has a single cycle for all $n \leq 3$.

Proof. Since $g(x) \equiv 1 \bmod 2$ for every element x of $\mathbb{Z}_{2^{n}}$ we get $g(x)^{2}=$ 1 for every element x of $\mathbb{Z}_{2^{3}}$. Hence $f(x)=x+1$ for every element x of $\mathbb{Z}_{2^{3}}$. So by Proposition $2.6 f(x)$ has a single cycle on $\mathbb{Z}_{2^{3}}$. Therefore $f(x)$ has a single cycle on $\mathbb{Z}_{2^{n}}$ for all $n \leq 3$.

Proposition 2.8. Let $f(x)=x+\left(g(x)^{2} \vee C\right)$ be a T-function on $\mathbb{Z}_{2^{n}}$, where $g(x)$ is a function on $\mathbb{Z}_{2^{n}}$ and C is a constant such that $[C]_{0}=[C]_{2}=1$. Then $f(x)$ has a single cycle for all $n \leq 3$.

Proof. If C is a constant such that $[C]_{0}=[C]_{2}=1$, then $C \equiv 5 \bmod$ 8 or $C \equiv 7 \bmod 8$. Note that $g(x)^{2}=0, g(x)^{2}=1$ or $g(x)^{2}=4$ for every element x of $\mathbb{Z}_{2^{3}}$. Hence $g(x)^{2} \vee C=C$ for every element x of $\mathbb{Z}_{2^{3}}$. So by Proposition $2.6 f(x)=x+C$ has a single cycle on $\mathbb{Z}_{2^{3}}$. Therefore $f(x)$ has a single cycle on $\mathbb{Z}_{2^{n}}$ for all $n \leq 3$.

Proposition 2.9. Let $r(x)$ be a parameter and $f(x)$ be a function defined by $f(x)=x+r(x)$. Let N_{e} be a positive integer such that $f(x)$ has a single cycle modulo $2^{N_{e}}$. Then $f(x)$ has a single cycle modulo 2^{n} for all n if and only if $r(x)$ is an even parameter for all $n \geq N_{e}$.

Proof. The proof may be found in [6].
Theorem 2.10. Let $f(x)=x+h(x)$ be a function on $\mathbb{Z}_{2^{n}}$. Suppose that $h(x)$ satisfies one of following forms:
(1) $\{2 g(x)+1\}^{2}$ for every T-function $g(x)$ on $\mathbb{Z}_{2^{n}}$.
(2) $g(x)^{2} \vee C$ for every bijective T-function $g(x)$ on $\mathbb{Z}_{2^{n}}$ and C is a constant such that $[C]_{0}=[C]_{2}=1$.
(3) $g(x)^{2} \vee C$ for every polynomial $g(x)$ on $\mathbb{Z}_{2^{n}}$ and C is a constant such that $[C]_{0}=[C]_{2}=1$.

Then $f(x)$ has a single cycle on $\mathbb{Z}_{2^{n}}$ for all n.

Proof. Suppose that (1) holds. Then it follows from Proposition 2.7 that $f(x)$ has a single cycle for all $n \leq 3$. Also, by Theorem $2.5 g(x)^{2}$ is an even parameter for all $n \geq 3$. Hence by Proposition $2.9 f(x)$ has a single cycle on $\mathbb{Z}_{2^{n}}$ for all n.

Suppose that (2) holds. Then the proof follows from [8].
Finally, suppose that (3) holds. Then it follows from Proposition 2.8 that $f(x)$ has a single cycle for all $n \leq 3$. Also, by Theorem $2.5 g(x)^{2}$ is an even parameter for all $n \geq 3$ and so $g(x)^{2} \vee C$ is an even parameter for all $n \geq 3$. Hence by Proposition $2.9 f(x)$ has a single cycle on $\mathbb{Z}_{2^{n}}$ for all n.

Corollary 2.11. The function $f(x)=x+\left(x^{2} \vee C\right)$ has a single cycle on $\mathbb{Z}_{2^{n}}$ for all n if and only if C is a constant such that $[C]_{0}=[C]_{2}=1$.

Proof. If C is a constant such that $[C]_{0}=[C]_{2}=1$, it is a special case of $g(x)=x$ in Theorem 2.10. Conversely, suppose that C is a constant such that $[C]_{0}=0$ or $[C]_{2}=0$. Consider $f(x)=x+\left(x^{2} \vee C\right)$ on $\mathbb{Z}_{2^{3}}$ such that $[C]_{0}=0$ or $[C]_{2}=0$. If $[C]_{0}=0$, then $f(x)$ is not bijective since $f(x) \equiv 0 \bmod 2$ for every x of $\mathbb{Z}_{2^{3}}$. Hence $f(x)$ has no single cycle on $\mathbb{Z}_{2^{3}}$. If $[C]_{2}=0$, there are only two cases on $\mathbb{Z}_{2^{3}}: C=1$ and $C=3$. By simple calculation we can show that $f(x)$ has no single cycle on $\mathbb{Z}_{2^{3}}$. Thus $f(x)$ has no single cycle on $\mathbb{Z}_{2^{n}}$. Therefore, Corollary 2.11 holds.

Example 2.12. Let $g(x)=x+\left(2 x^{2}+1\right)^{2}$ and $h(x)=x+\left(\left(x^{2}+x+\right.\right.$ $1)^{2} \vee 5$) be polynomials of degree 2 . Then by Theorem $2.10 g(x)$ and $h(x)$ have a single cycle modulo $\mathbb{Z}_{2^{3}}$. Since $\left(2 x^{2}+1\right)^{2}$ and $\left(x^{2}+x+1\right)^{2} \vee 1$ are even parameters all $n \geq 3, g(x)$ and $h(x)$ have a single cycle modulo 2^{n} for all n.

References

[1] A Kilmov, Applications of T-functions in Cryptography, Ph. D. Thesis Weizmann Institute Science, 2005.
[2] A Kilmov, Applications of T-functions in Cryptography,2005.
[3] A Kilmov and A. Shamir, A New Class of Invertible Mappings, CHES 2002, LNCS 2523, 470-483, 2003.
[4] A Kilmov and A. Shamir, Cryptographic Applications of T-Functions, SAC 2003, LNCS 3006, 248-261, 2004.
[5] A Kilmov and A. Shamir, New Cryptographic Primitives Based on Multiword T-Functions, FSE 2004, LNCS 3017, 1-15, 2004.
[6] A Kilmov and A. Shamir, New Applications of T-function in Block Cipher and Hash Functions, FSE 2005.
[7] M. S. Rhee, On a characterization of T-functions with one cycle property, J. of the Chungcheong Math Soc. 21 (2008), no. 2, 259-268.
[8] M. S. Rhee, On secure binary sequences generated by a function $f(x)=x+$ $\left(g(x)^{2} \vee C\right) \bmod 2^{n}, \mathrm{~J}$. of the Chungcheong Math Soc. 22 (2009), no. 4, 777-789.
*
Department of Mathematics
Dankook University
Cheonan 330-714, Republic of Korea
E-mail: msrhee@dankook.ac.kr

[^0]: Received October 25, 2011; Accepted November 18, 2011.
 2010 Mathematics Subject Classification: Primary 94A60.
 Key words and phrases: a T-function, an n-bit word, period, a single cycle.
 The present research was conducted by the research fund of Dankook University in 2010.

