JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **24**, No. 4, December 2011

ON A T-FUNCTION f(x) = x + h(x) WITH A SINGLE CYCLE ON \mathbb{Z}_{2^n}

MIN SURP RHEE*

ABSTRACT. Invertible transformations over *n*-bit words are essential ingredients in many cryptographic constructions. When *n* is large (e.g., n = 64) such invertible transformations are usually represented as a composition of simpler operations such as linear functions, S-P networks, Feistel structures and T-functions. Among them we study T-functions which are probably invertible and are very useful in stream ciphers. In this paper we study some conditions on a T-function h(x) such that f(x) = x + h(x) has a single cycle on \mathbb{Z}_{2^n} .

1. Introduction

Let $\mathbb{B}^n = \{(x_{n-1}, x_{n-2}, \cdots, x_0) | x_i \in \mathbb{B}\}$ be the set of all *n*-tuples of elements in \mathbb{B} , where $\mathbb{B} = \{0, 1\}$. Then an element of \mathbb{B} is called a bit and an element of \mathbb{B}^n is called an *n*-bit word. An element *x* of \mathbb{B}^n can be represented as $([x]_{n-1}, [x]_{n-2}, \cdots, [x]_0)$, where $[x]_{i-1}$ is the *i*-th component from the right end of *x*. In particular, the first component $[x]_0$ of *x* is called the least bit of *x*. It is often useful to express an element $([x]_{n-1}, [x]_{n-2}, \cdots, [x]_0)$ of \mathbb{B}^n as an element $\sum_{i=0}^{n-1} [x]_i 2^i$ of \mathbb{Z}_{2^n} and $\sum_{i=0}^{n-1} [x]_i 2^i$ of \mathbb{Z}_{2^n} as $([x]_{n-1}, [x]_{n-2}, \cdots, [x]_0)$ of \mathbb{B}^n . In this expression every element of \mathbb{B}^n is considered as an element of \mathbb{Z}_{2^n} and vice versa, where \mathbb{Z}_{2^n} is the congruence ring modulo 2^n . Consequently \mathbb{B}^n is considered as \mathbb{Z}_{2^n} and vice versa. For example, an element (0, 1, 1, 0, 1, 0, 1, 1)of \mathbb{B}^8 is considered as an element 107 of $\mathbb{Z}_{2^8} = \mathbb{Z}_{256}$ and 75 of \mathbb{Z}_{2^8} is considered as (0, 1, 0, 0, 1, 0, 1, 1) of \mathbb{B}^8 .

Received October 25, 2011; Accepted November 18, 2011.

²⁰¹⁰ Mathematics Subject Classification: Primary 94A60.

Key words and phrases: a T-function, an n-bit word, period, a single cycle.

The present research was conducted by the research fund of Dankook University in 2010.

DEFINITION 1.1. For any *n*-bit words $x = (x_{n-1}, x_{n-2}, \dots, x_0)$ and $y = (y_{n-1}, y_{n-2}, \dots, y_0)$ of \mathbb{B}^n , we define the following:

(1) $x \pm y$ and xy are defined as $x \pm y \mod 2^n$ and $xy \mod 2^n$, respectively.

(2) $x \oplus y$ is defined as $(z_{n-1}, z_{n-2}, \dots, z_0)$, where $z_i = 0$ if $x_i = y_i$ and $z_i = 1$ if $x_i \neq y_i$ for each *i*.

(3) $x \lor y$ is defined as $(z_{n-1}, z_{n-2}, \cdots, z_0)$, where $z_i = 0$ if $x_i = y_i = 0$ and $z_i = 1$ otherwise for each *i*.

A function $f : \mathbb{B}^n \to \mathbb{B}^n$ is said to be a T-function(short for a triangular function) if for each $k \in \{0, 1, 2, \dots, n-1\}$ the k-th bit of an *n*-bit word f(x) depends only on the first k bits of an *n*-bit word x. In particular, a function $f : \mathbb{B}^n \to \mathbb{B}^n$ is said to be a parameter if for each $k \in \{1, 2, \dots, n-1\}$ the k-th bit of an *n*-bit word f(x) depends only on the first k-1 bits of an *n*-bit word x.

EXAMPLE 1.2. Let $f(x) = x + (x^2 \vee 1)$ on \mathbb{Z}_{2^n} . If $x = \sum_{i=0}^{n-1} [x]_i 2^i$, then $x^2 = [x]_0 + ([x]_1^2 + [x]_0 [x]_1) 2^2 + \cdots$, and since $[x]_i^2 = [x]_i$ we have

$$[f(x)]_0 = [x]_0 + [x]_0 \vee 1$$

$$[f(x)]_1 = [x]_1$$

$$[f(x)]_2 = [x]_2 + [x]_1 + [x]_0[x]_1$$

$$\vdots$$

$$[f(x)]_i = [x]_i + \alpha_i, \ \alpha_i \text{ is a function of } [x]_0, \cdots, [x]_{i-1}$$

$$\vdots$$

Hence f(x) is a T-function. But f(x) is not a parameter. Also, for any given word $f(x) = ([f(x)]_{n-1}, \dots, [f(x)]_1, [f(x)]_0)$ we can find $[x]_0, [x]_1, \dots, [x]_{n-1}$ in order. Hence f(x) is an invertible T-function.

Let $a_0, a_1, \dots, a_m, \dots$ be a sequence of numbers(or words) in \mathbb{Z}_{2^n} . If there is the least positive integer l such that $a_{i+l} = a_i$ for each nonnegative integer i, then the sequence $a_0, a_1, \dots, a_m, \dots$ is said to have a cycle of period l. In this case we say that a_0, a_1, \dots, a_{l-1} is called a cycle of period l. In general $a_i, a_{i+1}, \dots, a_{i+l-1}$ is a cycle of period l for every nonnegative integer i.

Now, for any function $f: \mathbb{Z}_{2^n} \to \mathbb{Z}_{2^n}$, let's define $f^i: \mathbb{Z}_{2^n} \to \mathbb{Z}_{2^n}$ by

$$f^{i}(x) = \begin{cases} x & \text{if } i = 0\\ f(f^{i-1}(x)) & \text{if } i \ge 1 \end{cases}$$

928

It is easy to show that $f^i(x)$ is a T-function for every positive integer i if f(x) is a T-function. Hence, if f(x) is a bijective T-function then so does $f^i(x)$ for every positive integer i.

Now, let $f : \mathbb{Z}_{2^n} \to \mathbb{Z}_{2^n}$ be a bijective T-function. An element(or word) α of \mathbb{Z}_{2^n} is said to have a cycle of period l in f if l is the least positive integer such that $f^l(\alpha) = \alpha$. If α has a cycle of period l and $\alpha_i = f^i(\alpha)$, then α generates a sequence which has a cycle $\alpha = \alpha_0, \alpha_1, \cdots, \alpha_{l-1}$ of period l. Also, in this case every word α_i for any nonnegative integer i has a cycle of period l. In particular, a word which has a cycle of period 1 is called a fixed word. That is, an element α of \mathbb{Z}_{2^n} is a fixed word if $f(\alpha) = \alpha$. Also, f is said to have a single cycle if there is a word which has a cycle of period 2^n . In this case every word of \mathbb{Z}_{2^n} has a cycle of period 2^n .

EXAMPLE 1.3. Let $f(x) = x + (x^2 \vee 1)$ be a function on \mathbb{Z}_{2^3} . Then f(0) = 1, f(1) = 2, f(2) = 7, f(3) = 4, f(4) = 5, f(5) = 6, f(6) = 3 and f(7) = 0. Hence 0 has a cycle 0, 1, 2, 7 of period 4 and 3 has a cycle 3, 4, 5, 6 of period 4.

EXAMPLE 1.4. Let $f(x) = x + (x^2 \vee 5)$ be a function on \mathbb{Z}_{2^3} . Then f(0) = 5, f(1) = 6, f(2) = 7, f(3) = 0, f(4) = 1, f(5) = 2, f(6) = 3 and f(7) = 4. Hence 0 has a cycle 0, 5, 2, 7, 4, 1, 6, 3 of period 8. Hence f has a single cycle.

EXAMPLE 1.5. Let $f(x) = x + (2x + 1)^2$ be a function on \mathbb{Z}_{2^3} . Then f(0) = 1, f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 5, f(5) = 6, f(6) = 7 and f(7) = 0. Hence 0 has a cycle 0, 1, 2, 3, 4, 5, 6, 7 of period 8. Hence f has a single cycle.

From above three examples we show that $f(x) = x + (x^2 \vee 5)$ and $f(x) = x + (2x+1)^2$ have a single cycle. In [8], the author showed that the function $f(x) = x + (g(x)^2 \vee C)$ on \mathbb{Z}_{2^n} has a single cycle if g(x) is a bijective T-function and C is a constant satisfying $[C]_0 = [C]_2 = 1$.

If a word a of \mathbb{Z}_{2^n} has a cycle of period l, then the l words $a_0 = f^0(a) = a, a_1 = f(a), \dots, a_i = f^i(a), \dots, a_{l-1} = f^{l-1}(a)$ are repeated in the sequence $a_0, a_1, \dots, a_m, \dots$. Since a word of \mathbb{Z}_{2^n} can be expressed as n bits, we may consider that a word a of \mathbb{Z}_{2^n} which has a cycle of period l in f generates a binary sequence of period $n \cdot l$. Hence a T-function f with a single cycle generates a binary sequence of period $n \cdot 2^n$, which is the longest period in f. Binary sequences of large period enough are important in a stream cipher. In this paper we study some conditions on h(x) such that f(x) = x + h(x) has a single cycle on \mathbb{Z}_{2^n} , where h(x) is a T-function on \mathbb{Z}_{2^n} .

2. Even parameters and T-functions with a single cycle

Let $r : \mathbb{B}^n \to \mathbb{B}^n$ be a parameter. Then from the definition of a parameter the (n-1)th bit of output r(x) is independent of the (n-1)th bit of input x. Hence $r(x) \equiv r(x+2^{n-1}) \mod 2^n$ for every word x of \mathbb{B}^n . Thus, we can express it as $r(x) \equiv r(x+2^{n-1}) + 2^n b(x) \mod 2^{n+1}$ for some function $b : \mathbb{B}^n \to \mathbb{B}$. That is, $b(x) \equiv 2^{-n} \{r(x+2^{n-1}) - r(x)\}$ mod 2. Let $\mathbb{B}[r(x), n]$ be a function defined by

$$\mathbb{B}[r(x),n] \equiv 2^{-n} \sum_{x=0}^{2^{n-1}-1} \left\{ r(x+2^{n-1}) - r(x) \right\} \equiv \bigoplus_{x=0}^{2^{n-1}-1} b(x) \mod 2.$$

Then we have the following definition:

930

DEFINITION 2.1. A parameter r(x) on \mathbb{Z}_{2^n} is said to be even (resp., odd) if $\mathbb{B}[r(x), n]$ is 0 (resp., 1).

EXAMPLE 2.2. Let r(x) = 2x on \mathbb{Z}_{2^n} . Since $r(x+2^{n-1}) \equiv r(x) + 2^n \cdot 1 \mod 2^{n+1}$, we get $b(x) \equiv 2^{-n} \{2(x+2^{n-1})-2x\} \equiv 1 \mod 2$ and $\mathbb{B}[r(x), n] \equiv 0 \mod 2$ for all $n \geq 2$. So r(x) is an even parameter.

By a similar method as above, $r(x) = x^2$ and r(x) = C are even parameters for all $n \ge 3$ and for all $n \ge 1$ on \mathbb{Z}_{2^n} , respectively, where Cis the constant function. From the definition of an even parameter we get the following proposition.

PROPOSITION 2.3. Let $r_1(x)$ and $r_2(x)$ be even parameters on \mathbb{Z}_{2^n} for all $n \geq k_1$ and $n \geq k_2$, respectively. Then $r_1(x) + r_2(x)$ is an even parameter for all $n \geq k$, where $k = \max\{k_1, k_2\}$.

EXAMPLE 2.4. Let $r_i(x) = x^{2i}$ on \mathbb{Z}_{2^n} , where *i* is a nonnegative integer. Note that $r_i(x+2^{n-1}) \equiv (x+2^{n-1})^{2i} \equiv r(x)+2i \cdot x \cdot 2^{n-1}$ mod 2^{n+1} for all $n \geq 3$ and $b(x) = [i]_0 \cdot [x]_0$. Hence $r_i(x)$ is an even parameter for all $n \geq 3$. By Proposition 2.3 $r(x) = \sum_{i=0}^m a_i r_i(x)$ is an even parameter for all $n \geq 3$. That is, if g(x) is a polynomial on \mathbb{Z}_{2^n} , then $g(x^2)$ is an even parameter for all $n \geq 3$.

Let $g(x) = a_m x^m + a_{m-1} x^{m-1} + \cdots + a_1 x + a_0$ be a polynomial on \mathbb{Z}_{p^n} , where p is a prime, $n \ge 1$ and $m \ge 1$. Then the polynomial

$$ma_m x^{m-1} + (m-1)a_{m-1}x^{m-2} + \dots + 2a_2x + a_1$$

is called the formal derivative of g(x) and is denoted by g'(x).

For example, if $g(x) \equiv x^4 + 3x^2 + x + 3 \mod 2^2$, then $g'(x) \equiv 2x + 1 \mod 2^2$. Now, we show that $g(x)^2$ is an even parameter if g(x) is a polynomial.

On a T-function f(x) = x + h(x) with a single cycle on \mathbb{Z}_{2^n} 931

THEOREM 2.5. Let $g(x) = a_m x^m + a_{m-1} x^{m-1} + \cdots + a_1 x + a_0$ be a polynomial on \mathbb{Z}_{2^n} . Then $g(x)^2$ is an even parameter for all $n \ge 3$.

Proof. Note

$$g(x+2^{n-1}) \equiv a_m(x+2^{n-1})^m + a_{m-1}(x+2^{n-1})^{m-1} + \cdots + a_2(x+2^{n-1})^2 + a_1(x+2^{n-1}) + a_0 \mod 2^{n+1}$$
$$\equiv a_m[x^m + m \cdot x^{m-1} \cdot 2^{n-1}] + a_{m-1}[x^{m-1} + (m-1) \cdot x^{m-2} \cdot 2^{n-1}] + \cdots + a_2[x^2 + 2 \cdot x \cdot 2^{n-1}] + a_1[x+2^{n-1}] + a_0 \mod 2^{n+1}$$
$$\equiv g(x) + g'(x) \cdot 2^{n-1} \mod 2^{n+1}.$$

for every integer $n \geq 3$. Hence

$$g(x+2^{n-1})^2 - g(x)^2 \equiv \{g(x) + g'(x)2^{n-1}\}^2 - g(x)^2 \mod 2^{n+1}$$
$$\equiv g(x)g'(x) \cdot 2^n \mod 2^{n+1}.$$

for every integer $n \ge 3$. Since the degree of $g(x)g'(x) \le 2m-1$, we may let $g(x)g'(x) = b_{2m-1}x^{2m-1} + \cdots + b_2x^2 + b_1x + b_0$. Then

$$\mathbb{B}[g(x)^2, n] \equiv 2^{-n} \sum_{x=0}^{2^{n-1}-1} \{g(x+2^{n-1})^2 - g(x)^2\} \mod 2$$
$$\equiv \sum_{x=0}^{2^{n-1}-1} g(x)g'(x) \mod 2$$
$$\equiv \sum_{x=0}^{2^{n-1}-1} \{b_{2m-1}x^{2m-1} + \dots + b_2x^2 + b_1x + b_0\} \mod 2$$
$$\equiv \sum_{x=0}^{2^{n-1}-1} [b_{2m-1} + \dots + b_2 + b_1]_0[x]_0 + [b_0] \mod 2$$
$$\equiv \sum_{x=0}^{2^{n-1}-1} \{\alpha[x]_0 + [b_0]_0\} \mod 2$$
$$\equiv 0 \mod 2.$$

for every integer $n \geq 3$, where $\alpha = [b_{2m-1} + \cdots + b_2 + b_1]_0$ is a multiplication parameter. Therefore, $g(x)^2$ is an even parameter for every integer $n \geq 3$.

PROPOSITION 2.6. Let f(x) = ax + b be a polynomial on \mathbb{Z}_{2^n} . Then g(x) has a single cycle on \mathbb{Z}_{2^n} if and only if $a \equiv 1 \mod 4$ and $b \equiv 1 \mod 2$.

Proof. The proof follows from [7].

If f(x) has a single cycle on \mathbb{Z}_{2^n} , then by definition of a single cycle it has a single cycle on \mathbb{Z}_{2^k} for every $k \leq n$. So we have following two propositions.

PROPOSITION 2.7. Let $f(x) = x + g(x)^2$ be a T-function on \mathbb{Z}_{2^n} , where g(x) = 2q(x) + 1 for some T-function q(x) on \mathbb{Z}_{2^n} . Then f(x) has a single cycle for all $n \leq 3$.

Proof. Since $g(x) \equiv 1 \mod 2$ for every element x of \mathbb{Z}_{2^n} we get $g(x)^2 = 1$ for every element x of \mathbb{Z}_{2^3} . Hence f(x) = x + 1 for every element x of \mathbb{Z}_{2^3} . So by Proposition 2.6 f(x) has a single cycle on \mathbb{Z}_{2^3} . Therefore f(x) has a single cycle on \mathbb{Z}_{2^n} for all $n \leq 3$.

PROPOSITION 2.8. Let $f(x) = x + (g(x)^2 \vee C)$ be a T-function on \mathbb{Z}_{2^n} , where g(x) is a function on \mathbb{Z}_{2^n} and C is a constant such that $[C]_0 = [C]_2 = 1$. Then f(x) has a single cycle for all $n \leq 3$.

Proof. If C is a constant such that $[C]_0 = [C]_2 = 1$, then $C \equiv 5 \mod 8$ or $C \equiv 7 \mod 8$. Note that $g(x)^2 = 0$, $g(x)^2 = 1$ or $g(x)^2 = 4$ for every element x of \mathbb{Z}_{23} . Hence $g(x)^2 \vee C = C$ for every element x of \mathbb{Z}_{23} . So by Proposition 2.6 f(x) = x + C has a single cycle on \mathbb{Z}_{23} . Therefore f(x) has a single cycle on \mathbb{Z}_{2^n} for all $n \leq 3$.

PROPOSITION 2.9. Let r(x) be a parameter and f(x) be a function defined by f(x) = x + r(x). Let N_e be a positive integer such that f(x)has a single cycle modulo 2^{N_e} . Then f(x) has a single cycle modulo 2^n for all n if and only if r(x) is an even parameter for all $n \ge N_e$.

Proof. The proof may be found in [6].

THEOREM 2.10. Let f(x) = x + h(x) be a function on \mathbb{Z}_{2^n} . Suppose that h(x) satisfies one of following forms:

(1) $\{2g(x)+1\}^2$ for every T-function g(x) on \mathbb{Z}_{2^n} .

(2) $g(x)^2 \vee C$ for every bijective T-function g(x) on \mathbb{Z}_{2^n} and C is a constant such that $[C]_0 = [C]_2 = 1$.

(3) $g(x)^2 \vee C$ for every polynomial g(x) on \mathbb{Z}_{2^n} and C is a constant such that $[C]_0 = [C]_2 = 1$.

Then f(x) has a single cycle on \mathbb{Z}_{2^n} for all n.

932

Proof. Suppose that (1) holds. Then it follows from Proposition 2.7 that f(x) has a single cycle for all $n \leq 3$. Also, by Theorem 2.5 $g(x)^2$ is an even parameter for all $n \geq 3$. Hence by Proposition 2.9 f(x) has a single cycle on \mathbb{Z}_{2^n} for all n.

Suppose that (2) holds. Then the proof follows from [8].

Finally, suppose that (3) holds. Then it follows from Proposition 2.8 that f(x) has a single cycle for all $n \leq 3$. Also, by Theorem 2.5 $g(x)^2$ is an even parameter for all $n \geq 3$ and so $g(x)^2 \vee C$ is an even parameter for all $n \geq 3$. Hence by Proposition 2.9 f(x) has a single cycle on \mathbb{Z}_{2^n} for all n.

COROLLARY 2.11. The function $f(x) = x + (x^2 \vee C)$ has a single cycle on \mathbb{Z}_{2^n} for all n if and only if C is a constant such that $[C]_0 = [C]_2 = 1$.

Proof. If C is a constant such that $[C]_0 = [C]_2 = 1$, it is a special case of g(x) = x in Theorem 2.10. Conversely, suppose that C is a constant such that $[C]_0 = 0$ or $[C]_2 = 0$. Consider $f(x) = x + (x^2 \vee C)$ on \mathbb{Z}_{2^3} such that $[C]_0 = 0$ or $[C]_2 = 0$. If $[C]_0 = 0$, then f(x) is not bijective since $f(x) \equiv 0 \mod 2$ for every x of \mathbb{Z}_{2^3} . Hence f(x) has no single cycle on \mathbb{Z}_{2^3} . If $[C]_2 = 0$, there are only two cases on \mathbb{Z}_{2^3} : C = 1 and C = 3. By simple calculation we can show that f(x) has no single cycle on \mathbb{Z}_{2^3} . Thus f(x) has no single cycle on \mathbb{Z}_{2^n} . Therefore, Corollary 2.11 holds.

EXAMPLE 2.12. Let $g(x) = x + (2x^2 + 1)^2$ and $h(x) = x + ((x^2 + x + 1)^2 \lor 5)$ be polynomials of degree 2. Then by Theorem 2.10 g(x) and h(x) have a single cycle modulo \mathbb{Z}_{2^3} . Since $(2x^2+1)^2$ and $(x^2+x+1)^2 \lor 1$ are even parameters all $n \ge 3$, g(x) and h(x) have a single cycle modulo 2^n for all n.

References

- A Kilmov, Applications of T-functions in Cryptography, Ph. D. Thesis Weizmann Institute Science, 2005.
- [2] A Kilmov, Applications of T-functions in Cryptography, 2005.
- [3] A Kilmov and A. Shamir, A New Class of Invertible Mappings, CHES 2002, LNCS 2523, 470-483, 2003.
- [4] A Kilmov and A. Shamir, Cryptographic Applications of T-Functions, SAC 2003, LNCS 3006, 248-261, 2004.
- [5] A Kilmov and A. Shamir, New Cryptographic Primitives Based on Multiword T-Functions, FSE 2004, LNCS 3017, 1-15, 2004.
- [6] A Kilmov and A. Shamir, New Applications of T-function in Block Cipher and Hash Functions, FSE 2005.

- [7] M. S. Rhee, On a characterization of T-functions with one cycle property, J. of the Chungcheong Math Soc. 21 (2008), no. 2, 259-268.
- [8] M. S. Rhee, On secure binary sequences generated by a function $f(x) = x + (g(x)^2 \vee C) \mod 2^n$, J. of the Chungcheong Math Soc. **22** (2009), no. 4, 777-789.

*

Department of Mathematics Dankook University Cheonan 330-714, Republic of Korea *E-mail*: msrhee@dankook.ac.kr

934