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TWO DIMENSIONAL VERSION OF LEAST SQUARES
METHOD FOR DEBLURRING PROBLEMS

SunJoo Kwon* and SeYoung Oh**

Abstract. A two dimensional version of LSQR iterative algorithm
which takes advantages of working solely with the 2-dimensional
arrays is developed and applied to the image deblurring problem.
The efficiency of the method comparing to the Fourier-based LSQR
method and the 2-D version CGLS algorithm methods proposed by
Hanson ([4]) is analyzed.

1. Introduction

Image deblurring is to predict the original image from a recorded
image corrupted by blurring and noise. The standard linear model for
the description of the degraded image is

(1.1) b(i, j) =
∑

(k,l)∈Rs

h(i− k, j − l)x(k, l) + η(i, j),

where b is the observed (or degraded) image, x is the true image, h is
the spatially invariant point spread function(PSF) with region of sup-
port Rs, and η represents unknown perturbations in the data like noise.
A discrete model of (1.1) is usually formulated by a large-scale linear
system

(1.2) b = Hx + η

where the matrix H is defined by PSF. By considering the presence of
unknown perturbations in the data, the image deblurring problem can
be written as a functional minimization problem

(1.3) min
x
‖Hx− b‖2 .
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The above problems are typically ill-posed since the noise in the data
may give rise to significant errors in the computation of approximations.
Thus a reguarization is needed in order to get stable solutions when the
matrix H is severely ill-conditioned. The Tikhonov regularization of
(1.3) drives

(1.4) min
x

(‖Hx− b‖2
2 + λ2 ‖Lx‖2

2),

where the regularization operator L is often chosen as the identity matrix
or a discretization of a differentiation operator([4, 7]). The regularization
parameter λ lies in between the smallest and the largest singular value
of H.

Iterative methods such as Landweber and conjugate gradient type
approaches (e.g., CGLS, MINRES, LSQR) can be applied for solving
(1.4) ([5, 6, 9, 10]). Notice that the LSQR method is a variation of
CGLS and these two methods are mathematically equivalent ([1]).

Suppose that the PSF kernel h in (1.1) is separable, that is, the blur-
ring can be separated into the pure horizontal and vertical components
corresponding to the horizontal blurring matrix Ā and the vertical blur-
ring matrix A respectively. Then the PSF matrix can be reformulated
as

(1.5) H = Ā⊗A,

where ⊗ denotes the Kronecker product of two square matrices. Now
the Tikhonov regularized problem (1.4) can be written by the associated
damped least squares problem

(1.6) min
x

∥∥∥∥
(

Ā⊗A
λI

)
x−

(
b
0

)∥∥∥∥
2

2

= min
x

∥∥∥Ĥx− b̂
∥∥∥

2
.

By using the properties of the Kronecker product (1.6) can be con-
verted to the 2-D deconvolution problem which is solvable by the 2-D
version of the Landweber and CGLS algorithm methods proposed by
Hanson ([4]). The advantage of this method is that we can work solely
with the 2-dimensional arrays that represent the underlying 2-D func-
tions.

In this study we derive the 2-D version of LSQR algorithm and apply
the algorithm for solving the image deblurring problem. The efficiency
of the 2-D version of LSQR, comparing to the Fourier-based version,
will be analyzed. Also, the result compared to the 2-D version CGLS
algorithm will be investigated.

The brief description of the LSQR method is summarized in Section 2.
Section 3 illustrates the two dimensional LSQR method (2-D LSQR) for
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the image deblurring problem. Numerical experiments and final remarks
are described in Section 4.

The product of a block matrix Vk = [V1, V2, ..., Vk] for k matrices of
Vi, i = 1, ..., k and k-vector y is defined by Vk ∗ y =

∑k
i=1 yiVi. The

notation of y = vec(Y ) is a column stacking of matrix Y .

2. LSQR method

This section briefly reviews basic properties of LSQR algorithm in
[1] and [11]. The LSQR method is an iterative method for computing
a sequence of approximate solutions to the linear least squares problem
(1.6).

The bidiagonalization of Ĥ with starting vector b is initialized with

(2.1) β1u1 = b, α1v1 = ĤT u1

and for i = 1, 2, . . ., the method computes

βi+1ui+1 = Ĥvi − αiui,

αi+1vi+1 = ĤT ui+1 − βi+1vi,
(2.2)

where αi ≥ 0 and βi ≥ 0 are chosen so that ‖ui‖2 = ‖vi‖2 = 1. After
k steps, two orthonormal basis, Ûk ≡ [

u1 u2 . . . uk

]
and V̂k ≡[

v1 v2 . . . vk

]
, and a lower bidiagonal matrix Tk ≡ tridiagonal(βi,

αi, 0) are produced. The recurrence formulas (2.1) and (2.2) of the
bidiagonalization can be rewritten as

Ûk+1(β1e1) = b̂,

ĤV̂k = Ûk+1Tk,

ĤÛk+1 = V̂kT
T
k + αk+1vk+1e

T
k+1,

(2.3)

where ei is the ith column of identity matrix. From (2.3) the LSQR
algorithm can find an approximate solution of the form xk = V̂kyk,
where yk is a solution of minx ‖β1e1 − Tkyk‖2 .

3. Two dimensional version of LSQR

In this section, we propose a two dimensional version of LSQR method
(2-D LSQR) which is LSQR method using matrix representations with
the property of Kronecker product.
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First, consider the following relation of the Kronecker product ⊗,

(3.1) (Ā⊗A)vec(X) = vec(AXĀT ),

where vec(X) = x is a column stacking of matrix Xn×n ([2]). Then the
2-D problem of the equation (1.4) is represented by

min
X
{∥∥AXĀT −B

∥∥2

F
+ λ2 ‖X‖2

F },
and the associated form (1.6) can be converted to

(3.2) min
X

∥∥∥∥
(

AXĀT

λX

)
−

(
B
O

)∥∥∥∥
2

F

= min
X

∥∥∥∥
(

AXĀT −B
λX

)∥∥∥∥
2

F

,

where b = vec(B). Set vi = vec(Vi) , ui = vec(Ui), and Ui =
(

U1
i

U2
i

)
,

where U1
i = Ui(1 : n, :) and U2

i = Ui(n + 1 : 2n, :) are n× n matrices.
The bidiagonalization of the problem (3.2) similar to (2.1) and (2.2)

can be written as
β1U1 = B̂,

α1V1 = AT U1
1 Ā + λU2

1

for i = 1, 2, . . .

βi+1Ui+1 =
[

AViĀ
T

λVi

]
− αiUi,

αi+1Vi+1 = AT U1
i+1Ā + λU2

i+1 − βi+1Vi.

(3.3)

The nonnegative scalars αi and βi above are the elements of the lower
bidiagonal matrix Tk ≡ tridiag(βi, αi, 0). The bidiagonalization proce-
dure (3.3) constructs two F -orthonormal basis, Uk ≡

[
U1 U2 . . . Uk

]
and Vk ≡

[
V1 V2 ... Vk

]
such that ‖Ui‖F = ‖Vi‖F = 1, i = 1, · · · , k.

Now the matrix representations of the recurrence formula (3.3) can
be stated as following:

Uk+1 ∗ (β1e1) = B̂,(
Ā⊗A

λI

)
V̂k =

(
AV1Ā

T AV2Ā
T . . . AVkĀ

T

λV1 λV2 . . . λVk

)

= Uk+1 ∗ Tk,
(

Ā⊗A
λI

)T

Ûk+1

=
(

AT U1
1 Ā + λU2

1 AT U1
2 Ā + λU2

2 . . . AT U1
k Ā + λU2

k

)

= Vk ∗ TT
k + αk+1vk+1 ∗ eT

k+1.

(3.4)
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An approximate solution matrix Xk (∈ span(Vk)) to (3.2) is repre-
sented by

Xk = Vk ∗ yk,

where the vector yk minimizes the F -norm of the corresponding residual

Resk = B̂ − Uk+1 ∗ Tkyk

= β1U
(1) − (Uk+1 ∗ Tk)yk

= β1U
(1) − Uk+1 ∗ (Tkyk)

= Uk+1 ∗ (β1e1 − Tkyk).

Consequently, the problem is reduced to the least squares problem:

min ‖Resk‖F = min
yk

‖β1e1 − Tkyk‖2 .

Constructing the orthogonal matrix Q to eliminate the subdiagonal el-
ements β2, . . . βk+1 of Tk, we obtain the QR decomposition of Tk :

Q
[

Tk β1e1

]
=

[
R gk

0 ψ̄k+1

]
,

where the matrix R = upperbidiagonal(ρk, θk+1) and k-vector gk =
[ψi]ki=1. The approximate solution matrix to (3.2) is formed as in the
following theorem.

Theorem 3.1. The iterates computed by 2-D LSQR are represented
by recurrence formulas

Xj = Xj−1 + Pjψj , j = 1, . . . , k

where the j-th block matrix Pj of Pk = Vk ∗ R−1 is obtained from

Pj = (Vj − θjPj−1)ρ−1
j .

Proof. Updating the approximate solution matrix Xj ;

Xj = Vj ∗ yj = Vj ∗ (R−1gj) = (Vj ∗R−1) ∗ gj = Pj ∗ gj ,

we get

Xj = Pj ∗ gj =
[ Pj−1 Pj

] ∗
[

gj−1

ψj

]

= Pj−1gj−1 + Pjψj

= Xj−1 + Pjψj , j = 1, . . . , k.

The j-th column of the matrix R−1 is
[

(−1)j−1 θ2θ3···θj

ρ1···ρj−1ρj
(−1)j−2 θ3θ4···θj

ρ2···ρj−1ρj
. . . − θj

ρj−1ρj

1
ρj

0 . . . 0
]T

.
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The j-th element Pj of Pk ≡ Vk ∗R−1 is

Pj = (−1)j−1 θ2θ3 · · · θj

ρ1 · · · ρj−1ρj
V1 + (−1)j−2 θ3θ4 · · · θj

ρ2 · · · ρj−1ρj
V2 + · · ·

· · · − θj

ρj−1ρj
Vj−1 +

1
ρj

Vj

=
1
ρj

(
Vj − θj

ρj−1
Vj−1+

· · ·+ (−1)j−2 θ3θ4 · · · θj

ρ2 · · · ρj−1
V2 + (−1)j−1 θ2θ3 · · · θj

ρ1 · · · ρj−1
V1

)

=
1
ρj

(
Vj − θj

ρj−1

(
Vj−1 − θj−1

ρj−2

(
· · · − θ3

ρ2

(
V2 − θ2

ρ1
V1

))))
.

Since P1 = V1ρ1
−1, P2 = (V2 − θ2P1) ρ1

−1, and so on, we can obtain
Pj = (Vj − θjPj−1) ρj

−1.

Note that the matrix residual norm ‖Resk‖F is given by

‖Resk‖F = |ψ̄k+1|.

Based on the above discussion, 2-D version of the LSQR algorithm
can be stated as follows.

Algorithm 1. 2-D LSQR algorithm.

1. Input X0, B, and λ

2. Set B̂ = [B; O]

3. β1 =
∥∥∥B̂

∥∥∥
F

, U1 = B̂/β1, α1 =
∥∥AT U1Ā

∥∥
F

, V1 = AT U1Ā/α1

4. Set W1 = V1, ψ̄1 = β1, ρ̄1 = α1

5. For k=1, 2, . . .

i. $k =

[
AVkĀT

λVk

]
− αkUk

ii. βk+1 = ‖$k‖F
iii. Uk+1 = $k/βk+1

iv. τk = AT Ui+1(1 : n, :)Ā + λUi+1(n + 1 : 2n, :)− βk+1Vk

v. αk+1 = ‖τk‖F
vi. Vk+1 = τk/αk+1

vii. ρk = (ρ̄2 + β2
k+1)

1/2

viii. ck = ρ̄k/ρk, sk = βk+1/ρk

ix. θk+1 = skαk+1, ρ̄k+1 = ckαk+1

x. ψk = ckψ̄k, ψ̄k+1 = −skψ̄k

xi. Xk = Xk−1 + (ψi/ρi)Wi

xii. Wk+1 = Vk−1 − (θi+1/ρi)Wi

xiii. If |ψ̄k+1| is small enough, then stop
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4. Experimental results

The performance of the 2-D version of LSQR algorithm for the image
deblurring problem is presented in this section. For the purpose of the
comparison, 2-D CGLS method and 2-D LSQR method are implemented
in Matlab and applied to the practical image deblurring problems (3.2)
for the sample image in Figure 1(a). The 2-D LSQR method was also
compared to the Fourier-based algorithm for LSQR method.

Under the zero boundary condition, both of the matrices Ā and A in
(1.5) have the square and Toeplitz structures. Thus H becomes a block
Toeplitz with Toeplitz blocks(BTTB) matrix. It can be determined by
its first row and first column elements. By extending the BTTB into a
block circulant with circulant blocks matrix(BCCB), we can use the two
dimensional discrete Fourier transform to compute the matrix-vector
multiplications ([12]).

For our test, we only considered atmospheric turbulence blur with
a spatially invariant point spread function whose discrete function is

induced by h(i− j, k − l) = 1
2πσσ̄ exp

(
−1

2

(
i−j
σ

)2
− 1

2

(
k−l
σ̄

)2
)

where

−r ≤ i − j, k − l ≤ r. This is known as a Gaussian PSF in the image
processing community and can be used to model aberrations in a lens
with finite aperture([2, 8]).

In computations, the parameter σ = σ̄ = 7 and r = 16 was fixed
in the atmospheric turbulence. The blur function of the Regularization
tool([6]) was used in the tests of the methods. We set up the regular-
ization parameter λ as 0.01 and the stopping criteria with relative error
< 5.0× 10−2.

Figure 1 shows the results for a 512 × 512 true image ([3]) in Fig-
ure 1(a) corrupted with an additive Gaussian normal distributed. The
blurred and noisy image is shown in Figure 1(b). The reconstructed
image by the 2-D version LSQR method is given in Figure 1(c). Figure
1(d) shows the behavior of the PSNR as the iteration proceeds.

In Table 1, it is shown that the 2-D version of LSQR method for
size of 512 × 512 image was 3.9 times faster than Fourier-based LSQR
method to approach 30.03 for PSNR (peak signal-to-noise ratio). The
CPU time needed for the 2-D version of CGLS algorithm to get the
same accuracy was 59.87 which is slower by 0.81 than 2-D LSQR. Based
on our computational results of the algorithms for many sample images,
it is experimentally testified that the two dimensional version of LSQR
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Figure 1. (a) Exact image, (b) blurred and noisy image,
(c) restored image by the 2-D LSQR method with relative
error = 5.0 × 10−2 and PSNR = 30.03, and (d) plot of
the PSNR versus iteration numbers.

iterative algorithm working solely with the 2-dimensional arrays is more
efficient than the 2-D CGLS method and Fourier-based LSQR algorithm.

Table 1. Comparison of the CPU time for (I) 2-D ver-
sion of LSQR, (II) Fourier-based LSQR, and (III) 2-D
version of CGLS (relative error is about 5.0× 10−2).

Image size PSNR Iter. num. I II III
256× 256 29.8 842 17.33 57.52 20.13

31.3 910 19.60 61.40 22.27
512× 512 30.0 396 49.47 193.22 59.87

The implementation of the image deblurring problem is a memory
intensive application with insurmountable data. An adaption technique
of LSQR using the properties of the Kronecker product and solving the
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2-D deconvolution problem with the 2-dimensional arrays can reduce
the amount of works and speed up to get approximate solutions of least
squares problems. It can be a computationally effective way to many
applications as well as the image deblurring problems.

Our future work is to develop 2-D version techniques of the global
iterative methods such as the Gl-CGLS algorithm and the Gl-LSQR
algorithms and investigate their efficiencies.
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