JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **24**, No. 4, December 2011

SOME TOEPLITZ OPERATORS AND THEIR DERIVATIVES

SI HO KANG*

ABSTRACT. We prove that Toeplitz operators with symbols in RW are bounded and we calculate some upper bounds of the norm of these Toeplitz operators. We also analyze *n*-th derivative of Toeplitz operators and get some local estimates.

1. Introduction

Let dA denote the normalized area measure on the unit disk \mathbb{D} . For any real number α with $\alpha > -1$, $\int_{\mathbb{D}} (1 - |z|^2)^{\alpha} dA(z) = \frac{1}{\alpha + 1}$ and hence $dA_{\alpha}(z) = (\alpha + 1)(1 - |z|^2)^{\alpha} dA(z)$ is a probability measure on \mathbb{D} . For $p \ge 1$, the weighted Bergman space L_a^p consists of analytic fuctions on \mathbb{D} which are also in $L^p(\mathbb{D}, dA_{\alpha})$. Since L_a^2 is a closed subspace of $L^2(\mathbb{D}, dA_{\alpha})$, for each $z \in \mathbb{D}$, there exists a fuction K_z^{α} in L_a^2 such that $f(z) = \langle f, K_z^{\alpha} \rangle_{\alpha}$ for every $f \in L_a^2$. The function K_z^{α} is called the Bergman kernel and we define $k_z^{\alpha} = \frac{K_z^{\alpha}}{||K_z^{\alpha}||_{2,\alpha}}$ which is called the normalized Bergman kernel, where $|| \cdot ||_{p,\alpha}$ is the norm in the space $L^p(\mathbb{D}, dA_{\alpha})$ and $\langle \cdot, \cdot \rangle_{\alpha}$ is the inner product in the space $L^2(\mathbb{D}, dA_{\alpha})$. As is well known ([1],[5]),

$$K_z^{\alpha}(w) = \frac{1}{(1-\overline{z}w)^{2+\alpha}} \text{ and } k_z^{\alpha}(w) = \frac{(1-|z|^2)^{1+\frac{\alpha}{2}}}{(1-\overline{z}w)^{2+\alpha}}.$$

For a linear operator S on L^2_a , S induces a function \widetilde{S} on \mathbb{D} given by

$$S(z) = \langle Sk_z^{\alpha}, k_z^{\alpha} \rangle_{\alpha}, z \in \mathbb{D}$$

2010 Mathematics Subject Classification: Primary 47B35, 47B47.

Key words and phrases: weighted Bergman spaces, Toeplitz operators, Carleson measure, derivatives.

Received September 20, 2011; Accepted November 18, 2011.

This research was partially supported by Sookmyung women's Universety Research Grants 2011.

The function \widetilde{S} is called the Berezin transform of S.

For $u \in L^1(\mathbb{D}, dA)$, the Toeplitz operator T_u^{α} with symbol u is the operator on L_a^2 defined by $T_u^{\alpha}(f) = P_{\alpha}(uf)$, where P_{α} is the orthogonal projection from $L^2(\mathbb{D}, dA_{\alpha})$ onto L_a^2 .

Since $L^{\infty}(\mathbb{D}, dA)$ is dense in $L^{1}(\mathbb{D}, dA)$ if the Toeplitz operator T_{u}^{α} with symbol u in $L^{\infty}(\mathbb{D}, dA)$ is bounded, then the Toeplitz operator T_{u}^{α} with symbol u in $L^{1}(\mathbb{D}, dA)$ is densely defined on L_{a}^{2} and the Berezin transform \tilde{u} of a function is defined to be the Berezin transform of T_{u}^{α} .

Let Aut(\mathbb{D}) denote the set of all bianalytic maps of \mathbb{D} onto \mathbb{D} . By Schwarz's lemma, each element of Aut(\mathbb{D}) is a linear fractional transformation of the form $\lambda \varphi_z$, $|\lambda| = 1$, where $\varphi_z(w) = \frac{z - w}{1 - \overline{z}w}$.

For $z \in \mathbb{D}$, let $U_z^{\alpha} : L_a^2 \to L_a^2$ be defined by $U_z^{\alpha} f = (f \circ \varphi_z)(\varphi_z')^{1+\frac{\alpha}{2}}$. Since $(\varphi_z'(\varphi_z(w)))^{1+\frac{\alpha}{2}}\varphi_z(w)^{1+\frac{\alpha}{2}} = 1, U_z^{\alpha} \circ U_z^{\alpha}$ is the identity function on L_a^2 . Since $\int_{\mathbb{D}} |f \circ \varphi_z(\lambda)|^2 \times \mathbb{C}$

 $\times |\varphi'_{z}(\lambda)|^{2+\alpha} dA_{\alpha}(\lambda) = \int_{\mathbb{D}} |f(w)|^{2} \times (1-|w|^{2})^{\alpha} dA(w) = ||f||_{2,\alpha}, \ U_{z}^{\alpha} \text{ is an isometry. Thus } U_{z}^{\alpha} \text{ is a self-adjoint unitary operator.}$

We also define the conjugation operator S_z given by $S_z = U_z^{\alpha} S U_z^{\alpha}$, where S is an operator on L_a^2 .

We consider the problem to determine when a Toeplitz operator is bounded on L^2_a . Miao and Zheng ([2]) proved that Toeplitz operators with symbols in *BT* are bounded. Let $RW = \{f \in L^1(\mathbb{D}, dA) : ||f||_{RW} = \sup_{z \in \mathbb{D}} ||fk_z^{\alpha}||_{s,\alpha} < +\infty$ for some $s \in (2, \infty)\}$. Clearly *RW* is closed under the formation of conjugations

the formation of conjugations.

In this paper, we will show that Toeplitz operators with symbols in RW are bounded and for $u \in RW$, $|u|dA_{\alpha}$ is a Carleson measure. In Section 3, we evaluate some upper bounds for the Toeplitz operator norm. Section 4 deals with *n*-th derivatives of Toeplitz operators and we get some local estimates.

Throughout the paper, we use p' to denote the conjugate of p, that is, $\frac{1}{p} + \frac{1}{p'} = 1$.

2. Boundedness of some Toeplitz operators

Since dA_{α} is a probability measure on \mathbb{D} , whenever $0 , <math>L_a^q \subseteq L_a^p$. Thus for any $f \in RW$, $\sup_{z \in \mathbb{D}} ||fk_z^{\alpha}||_{2,\alpha} \leq ||f||_{RW}$.

Some Toeplitz operators and their derivatives

Since
$$|\widetilde{T}_{f}^{\alpha}(z)| = |\langle T_{f}^{\alpha}k_{z}^{\alpha}, k_{z}^{\alpha}\rangle_{\alpha} |\leq ||T_{f}^{\alpha}k_{z}^{\alpha}||_{2,\alpha} \leq ||fk_{z}^{\alpha}||_{2,\alpha}, \sup_{z\in\mathbb{D}}|\widetilde{T}_{f}^{\alpha}(z)|$$

 $\leq ||f||_{RW} \text{ and } |\widetilde{f}|(z) \leq ||f||_{RW}.$

Let μ be a finite positive Borel measure on \mathbb{D} and let $1 \leq p < +\infty$. The closed Graph Theorem shows that L_a^p is contained in $L^p(\mathbb{D}, d\mu)$ if and only if the inclusion map $i_p : L_a^p \to L^p(\mathbb{D}, d\mu)$ is bounded. We say that μ is a Carleson measure for L_a^p if the inclusion map from L_a^p to $L^p(\mathbb{D}, d\mu)$ is bounded. We notice that $\tilde{\mu}$ is the Berezin symbol of μ , that is, $\tilde{\mu}(z) = \int_{\mathbb{D}} |k_z^{\alpha}(w)|^2 d\mu(w), z \in \mathbb{D}$.

The following lemma comes from [5].

LEMMA 2.1. Suppose μ is a positive Borel measure on \mathbb{D} and $1 \leq p < +\infty$. Then the followings are equivalent :

(a) $\sup \left\{ \frac{\mu(D(z,r))}{\left(1-|z|^2\right)^{2+\alpha}} : z \in \mathbb{D} \right\} < +\infty ;$ (b) $\sup\{\widetilde{\mu}(z) : z \in \mathbb{D}\} < +\infty ;$ (c) μ is a Carleson measure on \mathbb{D} ; (d) $\sup\left\{ \frac{\int_{\mathbb{D}} |f|^p d\mu}{\int_{\mathbb{D}} |f|^p dA_{\alpha}} : f \in L^p_a \right\} < +\infty.$ For $D(z,r) = \{w \in \mathbb{D} : \beta(w,z) < r\}$ is the Berger

Here, $D(z,r) = \{ w \in \mathbb{D} : \beta(w,z) < r \}$ is the Bergman disk.

PROPOSITION 2.2. Suppose $f \in RW$. Then (1) $|f|dA_{\alpha}$ is a Carleson measure on \mathbb{D} ; (2) for $1 , <math>T_f^{\alpha}$ is bounded on L_a^p and there is a constant Csuch that $||T_f^{\alpha}||_p \leq C||f||_{RW}$,

where $||T_f^{\alpha}||_{p}$ is the operator norm on L_a^p .

Proof. For $z \in \mathbb{D}$, $|\tilde{f}|(z) = \int_{\mathbb{D}} |k_z^{\alpha}(w)|^2 |f(w)| dA_{\alpha}(w) \leq ||fk_z^{\alpha}||_{2,\alpha}$. This implies that (b) in Lemma 2.1 is finite. Thus $|f| dA_{\alpha}$ is a Carleson measure. To show (2), suppose $\frac{1}{p} + \frac{1}{p'} = 1$, $g \in L_a^p$ and $h \in L_a^{p'}$. Since $|f| dA_{\alpha}$ is a Carleson measure, $|\langle T_f^{\alpha}g, h \rangle| \leq (\int_{\mathbb{D}} |g|^p |f| dA_{\alpha})^{\frac{1}{p}}$ $(\int_{\mathbb{D}} |h|^{p'} |f| dA_{\alpha})^{\frac{1}{p'}} \leq C ||f||_{BW} ||g||_{p,\alpha} ||h||_{p',\alpha}$ for some constant C. Thus $||T_f^{\alpha}||_{\alpha} \leq C ||f||_{BW}$.

EXAMPLE 2.3. Suppose $2 < s < +\infty$. For $0 \le x \le 1$, let

$$f(x) = \begin{cases} 2^{\frac{k}{s}} & \text{if } \frac{1}{2^{k}} - \left(\frac{1}{2^{k+1}}\right)^{2} \le x \le \frac{1}{2^{k}}; \\ 0 & \text{otherwise }. \end{cases}$$

We define f(z) = f(|z|) for all $z \in \mathbb{D}$, that is, f is a radial function. Since $\lim_{k \to \infty} \left(\frac{1}{2^k} - \left(\frac{1}{2^{k+1}}\right)^2\right) = 0, f \text{ is not in } L^{\infty}. \text{ Since } k_z^{\alpha}(w) = \frac{\left(1 - |z|^2\right)^{1 + \frac{\alpha}{2}}}{\left(1 - \overline{z}w\right)^{2 + \alpha}},$ $|k_z^{\alpha}(w)| \leq \frac{1}{\left(\frac{1}{2}\right)^{2 + \alpha}} = 2^{2 + \alpha} \text{ for all } |w| \leq \frac{1}{2} \text{ and hence } \int_{\mathbb{D}} |f(w)k_z^{\alpha}(w)|^s dA_{\alpha}(w)$ $\leq 2^{(2 + \alpha)s + \alpha} \int_0^{\frac{1}{2}} |f(t)|^s dt < +\infty. \text{ Thus } L^{\infty} \text{ is a proper subset of } RW.$

For $f \in L^2_a$ and $w \in \mathbb{D}$, we have

 (T_u^{α})

$$f)(w) = \langle T_u^{\alpha} f, K_w^{\alpha} \rangle_{\alpha}$$

= $\langle f, (T_u^{\alpha})^* K_w^{\alpha} \rangle_{\alpha}$
= $\int_{\mathbb{D}} f(z) \overline{((T_u^{\alpha})^* K_w^{\alpha})(z)} dA_{\alpha}(z)$
= $\int_{\mathbb{D}} f(z) (T_u^{\alpha} K_z^{\alpha})(w) dA_{\alpha}(z).$

That is, T_u^{α} is the integral operators with kernel $T_u^{\alpha}K_z^{\alpha}(w)$. Since for any $u \in RW$, $|u|dA_{\alpha}$ is a Carleson measure on L_a^p , T_u^{α} is a bounded linear operator on L_a^p . In the following section, we will evaluate some upper bounds of the Toeplitz operator norms.

3. Some upper bounds

In order to find some upper bounds, we need the following lemma which is a special case of Lemma 3.10 in [5].

LEMMA 3.1. Suppose $a < \alpha + 1$. If $a + b - \alpha < 2$ then

$$\sup_{z \in \mathbb{D}} \int_{\mathbb{D}} \frac{dA_{\alpha}(w)}{\left(1 - |w|^2\right)^a |1 - \overline{z}w|^b} < +\infty.$$

PROPOSITION 3.2. Suppose $u \in L^1(\mathbb{D}, dA)$ and 0 < a < 1. Then there exists t in $(1, \frac{2+\alpha}{2-a+\alpha})$ and there exists a constant C such that

$$\int_{\mathbb{D}} \frac{|(T_u^{\alpha} K_z^{\alpha})(w)|}{(1-|w|^2)^a} dA_{\alpha}(w) \le \frac{C||(T_u^{\alpha})_z 1||_{t',\alpha}}{(1-|z|^2)^{\alpha}}$$

for all $z \in \mathbb{D}$ and

$$\int_{\mathbb{D}} \frac{|(T_u^{\alpha} K_z^{\alpha})(w)|}{(1-|z|^2)^a} dA_{\alpha}(z) \le \frac{C||(T_u^{\alpha})_z 1||_{t',\alpha}}{(1-|w|^2)^{\alpha}}$$

for all $w \in \mathbb{D}$.

Proof. Take any z in \mathbb{D} . Since

$$T_u^{\alpha} K_z^{\alpha} = \frac{T_u^{\alpha} U_z^{\alpha} 1}{\left(|z|^2 - 1\right)^{1 + \frac{\alpha}{2}}} = \frac{(T_u^{\alpha})_z 1 \circ \varphi_z(\varphi_z')^{1 + \frac{\alpha}{2}}}{\left(|z|^2 - 1\right)^{1 + \frac{\alpha}{2}}},$$

put $w = \varphi_z(\lambda)$ to obtain the following :

$$\int_{\mathbb{D}} \frac{|T_{u}^{\alpha}K_{z}^{\alpha}(w)|}{(1-|w|^{2})^{a}} dA_{\alpha}(w)$$

$$= \frac{1}{(1-|z|^{2})^{1+\frac{\alpha}{2}}} \int_{\mathbb{D}} \frac{|((T_{u}^{\alpha})_{z}1)(\varphi_{z}(w))||\varphi_{z}'(w)|^{1+\frac{\alpha}{2}}}{(1-|w|^{2})^{a}} (1-|w|^{2})^{\alpha} dA(w)$$

$$= \frac{1}{(1-|z|^{2})^{a}} \int_{\mathbb{D}} \frac{|(T_{u}^{\alpha})_{z}1(\lambda)|}{(1-|\lambda|^{2})^{a}|1-\overline{z}\lambda|^{2-2a+\alpha}} dA_{\alpha}(\lambda)$$

$$\leq \frac{||(T_{u}^{\alpha})_{z}1||_{t',\alpha}}{(1-|z|^{2})^{a}} \Big(\int_{\mathbb{D}} \frac{dA_{\alpha}(\lambda)}{(1-|\lambda|^{2})^{at}|1-\overline{z}\lambda|^{(2-2a+\alpha)t}}\Big)^{\frac{1}{t}}.$$

Since we can pick t in $\left(1, \frac{2+\alpha}{1-a+\alpha}\right)$ so that $at + (2-2a+\alpha)t - \alpha < 2$, by Lemma 3.1, the above integral is finite. Put

$$C^{t} = \int_{\mathbb{D}} \frac{dA_{\alpha}(\lambda)}{\left(1 - |\lambda|^{2}\right)^{at} |1 - \overline{z}\lambda|^{(2-2a+\alpha)t}}.$$

Then we get the first inequality. Since $T_u^{\alpha} K_z^{\alpha}(w) = \langle T_u^{\alpha} K_z^{\alpha}, K_w^{\alpha} \rangle = \langle K_z^{\alpha}, (T_u^{\alpha})^* K_w^{\alpha} \rangle = \overline{(T_u^{\alpha})^* K_w(z)}$ and $(T_u^{\alpha})^* = T_u^{\alpha}$, we obtain the second inequality.

LEMMA 3.3. Suppose 0 < a < 1 and $u \in RW$, that is, $\sup ||uk_z^{\alpha}||_{s,\alpha} < +\infty$ for some s > 2. If $\frac{2+\alpha}{a} < s$ then there exists a constant C such that

$$\int_{\mathbb{D}} \frac{|(T_u^{\alpha} K_z^{\alpha})(w)|}{(1-|w|^2)^a} dA_{\alpha}(w) \le \frac{C||u||_{RW}}{(1-|z|^2)^a}$$

for all $z \in \mathbb{D}$ and

$$\int_{\mathbb{D}} \frac{|(T_u^{\alpha} K_z^a)(w)|}{(1-|z|^2)^a} dA_{\alpha}(z) \le \frac{C||u||_{RW}}{(1-|w|^2)^a}$$

for all $w \in \mathbb{D}$.

 $\begin{array}{l} \textit{Proof. Since } \frac{2+\alpha}{a} < s, \text{ there exists } t \text{ in } \left(\frac{2+\alpha}{a}, s\right) \text{ such that } 1 < \\ t' < \frac{2+\alpha}{2-a+\alpha}. \text{ Put } C^{t'} = \int_{\mathbb{D}} \frac{dA_{\alpha}(\lambda)}{\left(1-|\lambda|^2\right)^{at'} |1-\overline{z}\lambda|^{(2-2a+\alpha)t'}}. \text{ Since } (2-a+\alpha)t' - \alpha < 2, \text{ Lemma 3.1 implies that } C \text{ is finite. By Proposition 3.2,} \\ \int_{\mathbb{D}} \frac{\left|\left(T_u^{\alpha} K_z^{\alpha}\right)(w)\right|}{\left(1-|w|^2\right)^a} dA_{\alpha}(w) \leq \frac{C|\left|\left(T_u^{\alpha}\right)_z 1\right|\right|_{t,\alpha}}{\left(1-|z|^2\right)^a}. \text{ Since } t < s, \left|\left|\left(T_u^{\alpha}\right)_z 1\right|\right|_{t,\alpha} \leq \\ \left||u||_{RW}. \text{ Thus we get the results.} \end{array}$

We notice that for every $u \in RW$, T_u^{α} is the integral operator with kernel $T_u^{\alpha} K_z^{\alpha}(w)$. In order to find an upper bound of the operator norm $||T_u^{\alpha}||_p$, we need Schur's theorem ([5]).

THEOREM 3.4. Suppose K is a nonnegative measurable function on $X \times X$, T is the integral operator with kernel K and $1 . If there exist positive constants <math>C_1$ and C_2 and a positive measurable function h on X such that

$$\int_X K(x,y)h(y)^{p'}d\mu(y) \le C_1h(x)^p$$

for almost every x in X and

$$\int_X K(x,y)h(x)^p d\mu(x) \le C_2 h(y)^p$$

for almost every y in X, then T is a bounded linear operator on $L^p(X, d\mu)$ with norm less than or equal to $C_1^{\frac{1}{p'}}C_2^{\frac{1}{p}}$.

THEOREM 3.5. Suppose $1 and <math>\sup_{z} ||uk_{z}^{\alpha}||_{s,\alpha} < +\infty$ for some 2 < s, where $u \in L^{1}(\mathbb{D}, dA)$. If $q(2 + \alpha) < s$, where $q = \max\{p, p'\}$ then there is a constant C such that $||T_{u}^{\alpha}||_{p} \leq C||u||_{RW}$.

$$\begin{array}{l} Proof. \ \text{Let} \ h(z) \ = \ \left(\frac{1}{1-|z|^2}\right)^{\frac{1}{pp'}}. \ \text{Since} \ q(2+\alpha) \ < \ s, \ \text{there is} \ t \\ \text{such that} \ q(2+\alpha) \ < \ t \ < \ s \ \text{and} \ 1 \ < \ t' \ < \ \frac{2+\alpha}{2-\frac{1}{q}+\alpha}. \ \ \text{Let} \ \ C^{t'} \ = \\ \int_{\mathbb{D}} \frac{dA_{\alpha}(\lambda)}{(1-|\lambda|^2)^{\frac{t'}{q}}|1-\overline{z}\lambda|^{(2-\frac{2}{q}+\alpha)t'}}. \ \text{Since} \ 1 \ < \ t' \ < \ \frac{2+\alpha}{1-\frac{1}{q}+\alpha}, \ \ \frac{t'}{q} \ + \ (2-\frac{2}{q}+\alpha)t' \ < \ 2+\alpha \ \text{and} \ \text{hence} \ C \ \text{is finite.} \ \ \text{Since} \ t \ < \ s, \ ||(T^{\alpha}_{u})_{z}1||_{t,\alpha} \end{array}$$

and $||(T_{\overline{u}}^{\alpha})_{z}1||_{t,\alpha}$ are less than or equal to $||u||_{RW}$. This completes the proof.

4. Some operators

In this section, we will assume that u is an element of RW. Since $||f||_{RW} = ||\overline{f}||_{RW}$, RW is closed under the formation of conjugations. For any $f \in L^1(\mathbb{D}, dA)$, $(T_f^{\alpha})^* = T_{\overline{f}}^{\alpha}$ and hence one has the following :

PROPOSITION 4.1. For any $u \in RW$, the commutator $(T_u^{\alpha})^* T_u^{\alpha} - T_u^{\alpha} (T_u^{\alpha})^* = T_{\overline{u}}^{\alpha} T_u^{\alpha} - T_u^{\alpha} T_{\overline{u}}^{\alpha}$ is a bounded linear operator.

Let $1 \leq p < +\infty$. If $f \in L^p_a$ then $P_\alpha(f) = f$ and hence for $u \in RW$ and $h \in L^2_a$, $T^{\alpha}_f T^{\alpha}_u h = f T^{\alpha}_u h$. Since H^{∞} is dense in L^2_a , given a function f in $L^2(\mathbb{D}, dA_\alpha)$. H^{α}_f is densely defined which is given by $H^{\alpha}_f g = (I - P_\alpha)(fg)$ for all $g \in L^2_a$.

By the definitions of Hankel and Toeplitz operators, we get the following identity

$$(H_u^{\alpha})^* H_u^{\alpha} = T_{|u|^2}^{\alpha} - T_{\overline{u}}^{\alpha} T_u^{\alpha}.$$

Suppose $|u|^2$ and u are in RW. Since $T^{\alpha}_{|u|^2}$ and $T^{\alpha}_{\overline{u}}T^{\alpha}_u$ are bounded, $(H^{\alpha}_u)^*H^{\alpha}_u$ is also bounded. If $f \in H^{\infty}$ then $||H^{\alpha}_u(f)||_{2,\alpha} \leq ||uf||_{2,\alpha} + ||P_{\alpha}(uf)||_{2,\alpha} \leq ||f||_{\infty}(||u||_{2,\alpha} + ||u||_{RW})$ and hence H^{α}_u is bounded.

PROPOSITION 4.2. If $u \in RW$ then

$$|(T_{\overline{u}}^{\alpha}h)(w)| \leq \frac{1}{(1-|w|^2)^{1+\frac{\alpha}{2}}} ||h||_{2,\alpha} ||u||_{RW}$$

for every $h \in L^2_a$ and every $w \in \mathbb{D}$.

Proof. Since $u \in RW$, $||u||_{RW} = \sup_{z \in \mathbb{D}} ||uk_z^{\alpha}||_{s,\alpha} < +\infty$ for some $s \in (2,\infty)$. Suppose $w \in \mathbb{D}$ and $h \in L^2_a$. Then $(T^{\alpha}_{\overline{u}}h)(w) = \langle T^{\alpha}_{\overline{u}}h, K^{\alpha}_w \rangle_{\alpha} = \langle h, uK^{\alpha}_w \rangle_{\alpha} = \frac{1}{(1-|w|^2)^{1+\frac{\alpha}{2}}} \times |u|^{1+\frac{\alpha}{2}}$

 $\times \langle h, uk_w^{\alpha} \rangle_{\alpha}$. Hölder's inequality implies that $|\langle h, uk_w^{\alpha} \rangle_{\alpha} | \leq ||h||_{s',\alpha} ||uk_w^{\alpha}||_{s,\alpha}$. Since $||h||_{s',\alpha} \leq ||h||_{2,\alpha}$, one has the result.

For real numbers a, b, c, we define integral operators as following :

$$S_{a,b,c}f(w) = (1 - |w|^2)^a \int_{\mathbb{D}} \frac{(1 - |z|^2)^b}{|1 - \overline{z}w|^c} f(z) dA(z),$$

and

$$T_{a,b,c}f(w) = (1 - |w|^2)^a \int_{\mathbb{D}} \frac{(1 - |z|^2)^b}{(1 - \overline{z}w)^c} f(z) dA(z)$$

This is Theorem 3.11 of Zhu[5].

PROPOSITION 4.3. Suppose p > 1. If c is nether 0 nor a negative integer, then the following are equivalent.

(a) $S_{a,b,c}$ is bounded on $L^p(\mathbb{D}, dA_\alpha)$. (b) $T_{a,b,c}$ is bounded on $L^p(\mathbb{D}, dA_\alpha)$. (c) $c \leq 2 + a + b$ and $-pa < \alpha + 1 < p(b+1)$.

Suppose $u \in L^1(\mathbb{D}, dA)$. Then $\widetilde{u}(w) = \widetilde{T_u^{\alpha}}(w) = \langle T_u^{\alpha} k_w^{\alpha}, k_w^{\alpha} \rangle_{\alpha} = \int_{\mathbb{D}} \frac{(1 - |w|^2)^{2+\alpha}}{|1 - w\overline{z}|^{4+2\alpha}} \times u(z) dA_{\alpha}(z)$ and if $f, h \in L^2_a$ then $T_f^{\alpha} T_u^{\alpha} h = fT_u^{\alpha} h$.

PROPOSITION 4.4. Suppose $||u||_{RW} = \sup_{z \in \mathbb{D}} ||uk_z^{\alpha}||_{s,\alpha} < +\infty$ for some $s \in (3, \infty)$ and $w \in \mathbb{D}$. If $h^{s'} \in L^2_a$ then

$$|(T^{\alpha}_{\overline{u}}h)'(w)| \le \frac{(2+\alpha)c}{(1-|w|)^{\frac{2+\alpha}{s'}+\frac{1}{s}}} (\widetilde{|u|^{s}}(w))^{\frac{1}{s'}} ||h^{s'}||_{2,\alpha}^{\frac{1}{s'}}$$

for some constant c.

$$\begin{aligned} Proof. \ \text{Since} \ (T_{\overline{u}}^{\alpha}h)(w) &= \int_{\mathbb{D}} \frac{\overline{u}(z)h(z)}{(1-\overline{z}w)^{2+\alpha}} dA_{\alpha}(z), \ (T_{\overline{u}}^{\alpha}h)'(w) = (2+\alpha) \\ &\int_{\mathbb{D}} \frac{\overline{z}\,\overline{u}(z)h(z)}{(1-\overline{z}w)^{4+2\alpha}} \times (1-\overline{z}w)^{1+\alpha} \ dA_{\alpha}(z) \ \text{and hence} \\ &|(T_{\overline{u}}^{\alpha}h)'(w)| \leq (2+\alpha) \Big(\int_{\mathbb{D}} \frac{|u(z)|^{s}(1-|w|^{2})^{2+\alpha}}{|1-\overline{z}w|^{4+2\alpha}} dA_{\alpha}(z)\Big)^{\frac{1}{s}} \\ &\times \Big(\int_{\mathbb{D}} \frac{|h(z)|^{s'}|1-\overline{z}w|^{(1+\alpha)s'}}{|1-\overline{z}w|^{4+2\alpha}} dA_{\alpha}(z)\Big)^{\frac{1}{s'}}. \end{aligned}$$
Since $|1-\overline{z}w|$ and $1-|w|^{2}$ are greater than $1-|w|$ and $2+\alpha-(1+\alpha)s' < 2+\alpha-(1+\alpha)\frac{s'}{s}, \int_{\mathbb{D}} \frac{|h(z)|^{s'}|1-\overline{z}w|^{(1+\alpha)s'}}{|1-\overline{z}w|^{4+2\alpha}(1-|w|^{2})^{(2+\alpha)\frac{s'}{s}}} \leq \frac{c_{1}}{(1-|w|)^{2+\alpha+\frac{s'}{s}}} ||h^{s'}||_{2,\alpha} \end{aligned}$

for some constant c_1 . This completes the proof.

Some Toeplitz operators and their derivatives

LEMMA 4.5. Suppose $||u||_{RW} = \sup_{z \in \mathbb{D}} ||uk_z^{\alpha}||_{s,\alpha}$ for some $s \in (3, +\infty)$ and $w \in \mathbb{D}$. If $h^{s'} \in L^2_a$ then there is a constant C such that $|(T^{\alpha}_{\overline{u}}h)^{''}(w)| \leq \frac{C(2+\alpha)(3+\alpha)}{(1-|w|)^{\frac{2+\alpha}{s'}+\frac{1}{s}+1}} (\widetilde{|u|^s}(w))^{\frac{1}{s}} \times ||h^{s'}||_{2,\alpha}^{\frac{1}{s'}}.$

$$\begin{aligned} \text{Proof.} \quad &\text{Since } (T_{\overline{u}}^{\alpha}h)'(w) = (2+\alpha) \int_{\mathbb{D}} \frac{\overline{z} \, \overline{u}(z)h(z)}{(1-\overline{z}w)^{3+\alpha}} dA_{\alpha}(z), (T_{\overline{u}}^{\alpha}h)''(w) \\ &= (2+\alpha) \times (3+\alpha) \int_{\mathbb{D}} \frac{\overline{z}^2 \overline{u}(z)h(z)}{(1-\overline{z}w)^{4+\alpha}} dA_{\alpha}(z) \text{ and hence } |(T_{\overline{u}}^{\alpha}h)''(w)| \le (2+\alpha)(3+\alpha) \\ &\alpha) \times \Big(\int_{\mathbb{D}} \frac{|u(z)|^s (1-|w|^2)^{2+\alpha}}{|1-\overline{z}w|^{4+2\alpha}} dA_{\alpha}(z) \Big)^{\frac{1}{s}} \Big(\int_{\mathbb{D}} \frac{|h(z)|^{s'} |1-\overline{z}w|^{\alpha s'}}{|1-\overline{z}w|^{4+2\alpha}(1-|w|^2)^{(2+\alpha)} \frac{s'}{s}} dA_{\alpha}(z) \Big)^{\frac{1}{s'}} \\ &\le (2+\alpha)(3+\alpha)(\widetilde{|u|^s}(w))^{\frac{1}{s}} \\ &\times \Big(\frac{1}{(1-|w|)^{2+\alpha+\frac{s'}{s}+s'}} \int_{\mathbb{D}} \frac{|h(z)|^{s'} dA_{\alpha}(z)}{|1-\overline{z}w|^{2+\alpha-(1+\alpha)s'}(1-|w|^2)^{(1+\alpha)\frac{s'}{s}}} \Big)^{\frac{1}{s'}} \\ &\le \frac{C(2+\alpha)(3+\alpha)}{(1-|w|)^{\frac{2+\alpha}{s'}+\frac{1}{s}+1}} (\widetilde{|u|^s}(w))^{\frac{1}{s}} ||h^{s'}||_{2,\alpha}^{\frac{1}{s'}} \text{ for some constant } C. \end{aligned}$$

THEOREM 4.6. Suppose $||u||_{RW} = \sup_{z \in \mathbb{D}} ||uk_z^{\alpha}||_{s,\alpha} < +\infty$ for some $s \in (3, +\infty)$ and $w \in \mathbb{D}$. If $h^{s'} \in L^2_a$ and $n \ge 3$ then there is C such that $|(T^{\alpha}_{\overline{u}})^{(n)}(w)| \le \frac{C\Gamma(n+2+\alpha)}{\Gamma(2+\alpha)(1-|w|)^{\frac{2+\alpha}{s'}+\frac{1}{s}+n-1}} (\widetilde{|u|^s}(w))^{\frac{1}{s}} ||h^{s'}||_{2,\alpha}^{\frac{1}{s'}}.$

$$\begin{aligned} \text{Proof. Since } (T_{\overline{u}}^{\alpha})''(w) &= (2+\alpha)(3+\alpha) \int_{\mathbb{D}} \frac{\overline{z}^2 \overline{u}(z)h(z)}{(1-\overline{z}w)^{4+\alpha}} dA_{\alpha}(z), \\ (T_{\overline{u}}^{\alpha}h)'''(w) &= (2+\alpha) \times (3+\alpha)(4+\alpha) \int_{\mathbb{D}} \frac{\overline{z}^3 \overline{u}(z)h(z)}{(1-\overline{z}w)^{5+\alpha}} dA_{\alpha}(z) \text{ and hence} \\ |(T_{\overline{u}}^{\alpha}h)'''(w)| &\leq \frac{(2+\alpha)(3+\alpha)(4+\alpha)}{(1-|w|)} \times \int_{\mathbb{D}} \frac{|u(z)||1-\overline{z}w|^{\alpha}|h(z)|}{|1-\overline{z}w|^{4+2\alpha}} dA_{\alpha}(z) \\ &\leq \frac{(2+\alpha)(3+\alpha)(4+\alpha)}{(1-|w|)} (\widetilde{|u|^s}(w))^{\frac{1}{s}} \frac{C}{(1-|w|)^{\frac{2+\alpha}{s'}+\frac{1}{s}+1}} \times ||h^{s'}||_{2,\alpha}^{\frac{1}{s'}} \\ &= \frac{C(2+\alpha)(3+\alpha)(4+\alpha)}{(1-|w|)^{\frac{2+\alpha}{s'}+\frac{1}{s}+2}} ||h^{s'}||_{2,\alpha}^{\frac{2}{s'}} \text{ for some constant } C. \end{aligned}$$

This implies that for $n \geq 3$, $|(T^{\alpha}_{\overline{u}}h)^{(n)}(w)| \leq$

$$\frac{C\Gamma(n+2+\alpha)}{\Gamma(2+\alpha)(1-|w|)^{\frac{2+\alpha}{s'}+\frac{1}{s}+n-1}}(\widetilde{|u|^{s}}(w))^{\frac{1}{s}}||h^{s'}||_{2,\alpha}^{\frac{1}{s'}}.$$

COROLLARY 4.7. Suppose $||u||_{RW} = \sup_{z \in \mathbb{D}} ||uk_z^{\alpha}||_{s,\alpha} < +\infty$ for some $s \in (2, +\infty), w \in \mathbb{D}$ and $1 . If <math>h^{s'} \in L_a^p$ and $n \ge 3$ then there is a constant c such that

$$|(T_u^{\alpha}h)^{(n)}(w)| \le \frac{c\Gamma(n+2+\alpha)}{\Gamma(2+\alpha)(1-|w|)^{\frac{2+\alpha}{s'}+\frac{1}{s}+n-1}} (\widetilde{|u|^s}(w))^{\frac{1}{s}} ||h^{s'}||_{p,\alpha}^{\frac{1}{s'}}.$$

Proof. If follows from the fact that $p(1 + \alpha)\frac{s'}{s} = p(1 + \alpha)\frac{1}{s-1} < 1 + \alpha < p(1 + \alpha)$ and Theorem 4.6.

References

- S. Axler, Bergman spaces and their operators, Surveys of some recent results in operator theory, Vol 1 (J. B. conway and B. B. Morrel, editors), Pitman Research Notes, Math. Ser. 171 (1988), 1-50.
- [2] S. Axler and D. Zheng, Compact operators via the Berezin transform, Indiana Univ. Math. J. 47 (1998), 387-399.
- [3] J. Miao and D. Zheng, Compact operators on Bergman spaces, Integral Equations and operator Theory, 48 (2004), 61-79.
- [4] K. Stroethoff, The Berezin transform and operators on spaces of analytic functions, Banach Center Publ. 38 (1997), 361-380.
- [5] K. Zhu, Operator theory in Function Spaces, 2nd ed, Amer. Math. Soc. Providence, RI, 2005.

*

Department of Mathematics Sookmyung Women's University Seoul 140-742, Republic of Korea *E-mail*: shkang@sookmyung.ac.kr