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ON ORDINALS

Se Hwa Chung*

Abstract. The aim of this paper is two fold: One of them is
to introduce a formal definition of ordinals which is equivalent to
Neumann’s definition without assuming the axiom of regularity.
The other is to introduce the weak transfinite set and show that
the weak transfinite set is a transfinite limit ordinal.

1. Introduction

The concept of ordinals was introduced by Cantor in 1897, who also
introduced transfinite induction ([6]). Frege defined an ordinal as an
equivalence class of well-ordered sets([3]). The idea of identifying an
ordinal with the set of smaller ordinals is due to Zermelo and von
Neumann([6]). Zermelo has (1915) set up the formal definition of ordi-
nals having the three properties ([11])

Z1) m = ∅ or ∅ ∈ m.
Z2) For every element a ∈ m we have either a∪{a} = m or a∪{a} ∈

m.
Z3) For every n ⊆ m we have either sn = m or sn ∈ m.
v. Neumann has defined (1923) a set m as an ordinal as follows([5],

[6], [8], [9]):
A set is an ordinal, if
N1) m is full.
N2) m is well ordered by ∈.
R. M. Robinson has defined (1937) a set m as an ordinal as follows([3],

[7], [10], [11]):
A set m is an ordinal, if
R1) m is full.
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R2) If ∅ ⊂ n ⊆ m, n is basic, which means that it is disjoint to one
of its elements.

R3) ∈ is trichotomous on m, which means that s, t ∈ m imply either
s ∈ t or s = t or t ∈ s.

Gödel has defined (1939) a set m as an ordinal as follows([11]):
A set m is an ordinal, if
G1) m is full.
G2) If ∅ ⊂ n ⊆ m, n is basic.
G3) Every element of m is full.
Bernays has defined (1941) a set m as an ordinal as follows ([11]):
A set m is an ordinal, if
B1) m is full.
B2) Every full proper subset of m is a member.
In [11], Skolem proved that assuming the axiom of regularity, they

are all the same sets.
J. R. Isbell has defined (1960) a set m as an ordinal as follows([1]):

A set m is an ordinal if each of its full proper subsets is a member.
In the present paper, we have two goals. One of them is to introduce

a defintion of ordinals which is equivalent to the Neumann’s definition
without assuming the axiom of regularity. The other is to classify limit
ordinals into two classes: the usual limit ordinals and the transfinite
limit ordinals and then introduce the transfinite set and show that the
weak transfinite set is a transfinite limit ordinal.

This paper is organized as follows. In section 2, we first modify the
definition of full sets and then we introduce a concept of bi-transitive sets
and a definition of ordinals which is equivalent to Neumann’s defintion
without assuming the axiom of regularity. Eventually, we show that our
definition is equivalent to Robinson’s definition. In section 3, we classify
limit ordinals into two classes: the usual limit ordinals and the transfinite
limit ordinals. We characterize the usual limit ordinals. In section 4,
we introduce a concept of weak transfinite inductive sets and the weak
transfinite set. Moreover, we present an induction principle and then
using the induction principle, we show that the weak transfinite set is
a transfinite limit ordinal. In sections 2 and 3, we also present a few
further results, as well as new proofs of known ones that connected with
ordinals. For basic results on ordinals and set theory we refer to [6], [7]
and [11].
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2. A definition of ordinals

The concept of full sets is central to the study of ordinals. We first
recall that a set x is full (or transitive) if every element of x is a subset
of x(see [1], [5], [6], [7], [8]). To attain our purpose, we need to modify
the definition as follows: A set x is transitive if x ⊆ pr(x), where pr(x)
denotes the set of proper subsets of x. It is very important to note that
every transitive set is full and that assuming the axiom of regularity,
every full set is transitive. From now on, we do not assume the axiom
of regularity. One has the following:

Proposition 2.1. (1) The empty set ∅ is transitive.
(2) If x is a transitive set, then x /∈ x .
(3) If s and t are transitive sets, then s ∈ t and t ∈ s cannot both

hold.
(4) For a set x, {x} is transitive if and only if x = ∅.
(5) If x is a transitive set whose elements are transitive, then ∩x = ∅,

where ∩x is the intersection of elements of x.
(6) A set x is transitive if and only if s ∈ t ∈ x imply s ∈ x and t 6= x.
(7) If x is a set of transitive sets, then ∪x is a transitive set, where

∪x is the union of elements of x.
(8) If x is a set of transitive sets and z ⊆ x, then x∩p(z) is transitive,

where p(x) denotes the power set of x.

Proof. (1) it is vacuously true.
(2) It is immediate from the axiom of extensionality.
(3) It is immediate from (2).
(4) (⇒) Suppose x 6= ∅ and let t ∈ x. Since {x} is transitive, t ∈ {x}

and so x ∈ x. This is impossible because x ⊂ {x}. Thus x = ∅.
(⇐) Since ∅ ⊂ {∅}, {∅} is transitive.
(5) Suppose t ∈ ∩x. Since x is transitive, t ∈ x; hence t ∈ t. By (2),

this is impossible. Thus ∩x = ∅.
The proofs of (6) and (7) are routine.
(8) Suppose s ∈ t ∈ x ∩ p(z), then t ∈ x and t ∈ p(z). Since s ∈ t

and t is transitive, s ∈ p(t); hence s ∈ p(z). Since t ∈ p(z) and z ⊆ x,
t ∈ p(x). Since s ∈ t, s ∈ x. Thus s ∈ x ∩ p(z). Suppose t = x ∩ p(z),
then by the assumption, t ∈ t, contradicting the fact that t is transitive.
Thus t 6= x ∩ p(z). Therefore x ∩ p(z) is transitive.

It is clear that, by (4), {{∅}} is not transitive.

Notation. For a set x, tr(x) denotes the set of proper transitive
subsets of x. That is, tr(x) = {t ∈ pr(x) | t ⊆ pr(t)}.
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Definition 2.2. A set x is called:
(1) a bi-transitive set if tr(x) ⊆ x ⊆ pr(x).
(2) an ordinal if it is a transitive set whose elements are bi-transitive

sets.

Proposition 2.3. (1) The empty set ∅ is an ordinal.
(2) If x is a bi-transitive set, then x = ∅ or ∅ ∈ x.

Proof. (1) It is vacuously true.
(2) Suppose x 6= ∅, then ∅ ⊂ x. Since ∅ is transitive, ∅ ∈ x.

Lemma 2.4. If x is a set of bi-transitive sets and z ⊆ x, then x∩p(z)
is an ordinal.

Proof. Clearly every element of x∩ p(z) is bi-transitive. By Proposi-
tion 2.1 (2), x ∩ p(z) is transitive; hence x ∩ p(z) is an ordinal.

For two sets x and y, x ≤ y means that x ∈ y or x = y.

Theorem 2.5. (1) Every element of an ordinal is also an ordinal.
(2) If x is a nonempty set of ordinals, then it is well-ordered by ≤.
(3) If x is a nonempty ordinal, then it is well-ordered by ≤.
(4) If x is a nonempty ordinal, then tr(x) ⊆ x and hence it is bi-

transitive.
(5) If x is a nonempty ordinal and s ∈ tr(x), then s is the least

element of x− s.

Proof. (1) Let x be an ordinal and t ∈ x. Clearly t is transitive.
Since x is transitive, t ⊂ x; hence every element of t is a bi-transitive
set. Thus t is an ordinal.

(2) Let ∩x be the intersection of all elements of x. Firstly, we show
that ∩x is transitive. Take any y ∈ ∩x, then y ∈ t for all t ∈ x. Since
t is transitive, y ⊂ t; hence y ⊆ ∩x. If y = ∩x, then y ∈ y for y ∈ ∩x,
contradicting that y is transitive. Thus y ⊂ ∩x. Hence ∩x is transitive.
Since every element t of x is bi-transitive, ∩x ≤ t for all t ∈ x. Now we
show that ∩x ∈ x. Suppose ∩x 6= t for all t ∈ x, then ∩x ∈ t for all
t ∈ x; hence ∩x ∈ ∩x, contradicting that ∩x is transitive. Thus ∩x = t
for some t ∈ x and hence ∩x ∈ x. Thus by Proposition 2.1 (3) and (6),
x is well-orderd by ≤.

(3) It is immediate from the above statements (1) and (2).
(4) Let s ∈ tr(x) and t ∈ x − s. Now we show that s ⊆ t. Take any

u ∈ s, then u ∈ x. Since x is linearly ordered by ≤ and t, u ∈ x, u ∈ t
or t ≤ u. Suppose t ≤ u, then t ∈ s because s is transitive. Thus u ∈ t.
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Hence s ⊆ t. Since tr(t) ⊆ t, s ≤ t; hence s ∈ x because x is transitive
and t ∈ x. Therefore tr(x) ⊆ x and hence x is bi-transitive.

(5) In the proof of (4), it was proved that s ≤ t for all t ∈ x− s and
s ∈ x. Since s is transitive, s ∈ x − s. Hence s is the least element of
x− s.

Remark 2.6. (1) By Proposition 2.1 (2) and Theorem 2.5 (5), if x
is an ordinal, then x = ∅ or ∅ ∈ x.

(2) If x is the set of bi-transitive sets, then by Lemma 2.4, z = x∩p(x)
is an ordinal; hence z ∈ z and z /∈ z. Moreover, by Theorem 2.5 (5), z
is the set of all ordinals. Thus we have the following: (a) There does
not exist a set of all bi-transitive sets, and (b) There does not exist a
set of all ordinals. (b) is essentially the statement of the Burali-Forti
pardox-historically the first of the pardoxes of intuitive set theory([7]).

Theorem 2.7 ([5], [7]). If x is a transitive set and well ordered by
≤, then tr(x) ⊆ x and hence x is bi-transitive.

The ordinal defined by Neumann is called an N-ordinal. In [5], with-
out assuming the axiom of regularity, it was proved that x /∈ x for all
N-ordinals x. In fact, the proof relies on the fact that ∈ is an asymmetry
relation. Combining this fact with Theorems 2.5 and 2.7, we have the
following:

Theorem 2.8. A set x is an ordinal if and only if it is an N-ordinal.

Proof. Since both ordinal and N-ordinal are transitive, it is enough
to show that every element of x is bi-transitive if and only if it is well-
ordered by ≤.

(⇒) It is immediate from Theorem 2.5 (3).
(⇐) Since x is transitive, it is enough to show that every element of

x is bi-transitive. Let y ∈ x and take any z ∈ y. Since x is well-ordered
by ≤, z ⊆ y. Suppose z = y, then z ∈ z; hence y ∈ z, contrary to
asymmetry of ∈. Thus z ∈ pr(y); hence y ⊆ p(y). Let t ∈ tr(y). Then
t ∈ pr(y). Since x ⊆ pr(x) and y ∈ x, t ∈ pr(x). Since t ⊆ pr(t),
t ∈ tr(x); hence, by Theorem 2.7, t ∈ x. Since ∈ linearly orders x
and t ∈ tr(y), t ∈ y; hence tr(y) ⊆ y. Thus every element of x is
bi-transitive.

The ordinal defined by Robinson is called an R-ordinal.

Theorem 2.9 ([7], [11]). If x is a R-ordinal, then x = tr(x) and
t = tr(t) for all t ∈ x.

Theorem 2.10. A set is an ordinal if and only if it is an R-ordinal.
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Proof. It is immediate from Theorems 2.5 and 2.9.

Theorem 2.11. Let x be a set such that x /∈ x. Then x is bi-transitive
if and only if x ∪ {x} is bi-transitive.

Proof. Suppose x is bi-transitive, then it is clear that x∪{x} is tran-
sitive. Take any t ∈ tr(x ∪ {x}), then t ∈ tr(x). Otherwise {x} ⊆ t;
hence x ∈ t. Since t is transitive, x ⊂ t. Thus x∪{x} ⊆ t, contradicting
t ⊂ x ∪ {x}. Since x is bi-transitive and t ∈ tr(x), t ∈ x ∪ {x}. Thus
x∪{x} is bi-transitive. Suppose x∪{x} is bi-transitive. Take any t ∈ x,
then t ⊂ x ∪ {x}. Suppose t ∩ {x} 6= ∅, then x ∈ t; hence x ∈ x, contra-
dicting x /∈ x. Thus t ⊂ x; hence x is transitive. Take any t ∈ x, then
t ∈ tr(x ∪ {x}); hence t ∈ x ∪ {x}. Thus t ∈ x or t = x. Since t ⊂ x,
t ∈ x. Therefore x is bitransitive.

The following is due to Cesare Burali-Forti([5]).

Corollary 2.12. A set x is an ordinal if and only if x ∪ {x} is an
ordinal.

Proof. It is immediate from the above theorem.

3. Two types of limit ordinals

In this section, we classify limit ordinals into two types: usual limit
ordinals and transfinite limit ordinals and we characterize the usual limit
ordinals.

Let x be an ordinal, then ∪x ≤ x; hence for any s ∈ x, there is t ∈ x
such that s ∈ t. The set {t ∈ x | s ∈ t} has the least element, say ls.
Then ls = s ∪ {s}. Thus if x is an ordinal, then x = Sx ∪ Lx, where
Sx = {ls | s ∈ x} and Lx = x−Sx. In particular, ∅ ∈ Lx. Now we recall
(see [5], [6], [8] or [9]) that an ordinal x is called:

(1) a successor ordinal if x ∈ Sy for some ordinal y.
(2) a limit ordinal if x ∈ Ly for some ordinal y.

Remark 3.1. For every ordinal x, x ∪ {x} is a successor ordinal;
hence every ordinal is an element of a successor ordinal. If there is the
set x of successor ordinals, then ∪x is the set of all the ordinals. Hence,
by Cesare Burali-Forti’s pardox, there does not exist the set of successor
ordinals.

We recall that a set i is inductive if ∅ ∈ i, and x ∈ i implies x∪{x} ∈ i.

Theorem 3.2. Let x be an inductive set such that x /∈ x. Then x is
transitive if and only if x = ∪x.
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Proof. (⇒) Since x is transitive, ∪x ⊆ x. It remains to show that
x ⊆ ∪x. If t ∈ x, then t ∪ {t} ∈ x because x is inductive. Hence t ∈ ∪x.
Thus x ⊆ ∪x.

(⇐) It is clear that t ⊆ x for all t ∈ x. Since x 6= x, x 6= t. Thus x is
transitive.

Using the above theorem, we have the following:

Corollary 3.3. Let x be an ordinal. Then one has the following:
(1) x is inductive if and only if ∪x = x.
(2) x is a successor ordinal if and only if ∪x ∈ x.

Proof. (1) (⇒) It is immediate from the above lemma.
(⇐) Since x is an ordinal, ∅ ∈ x. Suppose t ∈ x. Since x ⊆ pr(x),

t ⊂ x. Hence t ∪ {t} ⊆ x. Suppose t ∪ {t} = x. Then ∪x = t for
t ⊆ pr(t). Hence x ∈ x, contradicting x /∈ x. Thus t ∪ {t} ⊂ x. By
Corollary 2.12, t ∪ {t} ∈ tr(x). Since tr(x) ⊆ x, t ∪ {t} ∈ x. Therefore,
x is inductive.

(2) If x ∈ ∪x, then t ∈ x ∈ t for some t ∈ x; hence t ∈ t, contradicting
t /∈ t. Thus x /∈ ∪x. Hence it is immediate from (1).

Remark 3.4. It is well known that an ordinal x is a limit ordinal
if and only if x = ∪x. Thus, by the above corollary, the following are
equivalent for an ordinal x:

(1) x is a limit ordinal.
(2) x is inductive.
(3) x = ∪y for some subset y of x.

Theorem 3.5. If ω is the least inductive set whose elements are bi-
transitive sets, then one has the following:

(a) ω = ω ∩ p(ω).
(b) ω is a limit ordinal.
(c) Every element of ω is either a successor ordinal or the empty set.
(d) If p is an inductive subset of ω, then p = ω.

Proof. (a) Let x = ω ∩ p(ω). Clearly x is a set of bi-transitive sets.
Now we show that x is inductive. Clearly ∅ ∈ x. Suppose s ∈ x,
then s ∈ ω and s ⊂ ω; hence s ∪ {s} ⊆ ω. Since ω is inductive and
s ∈ ω, s ∪ {s} ∈ x. Therefore x is an inductive set whose elements are
bi-transitive sets. Since x ⊆ ω, by the assumption, x = ω.

(b) It is immediate from (a), Lemma 2.4 and the above remark.
(c) Suppose t ∈ ω and t is a nonempty limit ordinal, then t ⊂ ω

because ω is transitive. Since t is a limit ordinal, t is an inductive set
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whose elements are bi-transitive sets; hence ω ⊆ t, which is a contra-
diction to t ⊂ ω. Thus every element of ω is a successor ordinal or the
empty set.

(d) Suppose ω − p 6= ∅ and let l be the least element of ω − p. Then
l 6= ∅ for ∅ ∈ p∩ω; hence by (c), l is a successor ordinal; hence l = y∪{y}
for some ordinal y. Since l ∈ ω and ω is transitive, l ⊂ ω; hence y ∈ ω.
Since l is the least element of ω − p, y ∈ p. Since p is inductive, l ∈ p,
which is a contradiction to l /∈ p. Thus p = ω.

Remark 3.6. The limit ordinal ω is exactly the set of all the naturals.

For any limit ordinal x, ∪Lx ≤ x because ∪Lx is a limit ordinal.
Motivated by this observation, we can classify limit ordinals into two
types as follows:

Definition 3.7. A limit ordinal x is called:
(a) a usual limit ordinal if ∪Lx ∈ x.
(b) a transfinite limit ordinal if ∪Lx = x.

Remark 3.8. Let x be a transfinite limit ordinal, then there is t ∈ Lx

such that s ∈ t for every s ∈ x. For any s ∈ x, let k = {t ∈ Lx | s ∈ t}.
Then there exists the least element of k, say ls. Therefore x = ∪{ls ∈
Lx | s ∈ x}.

Now we characterize usual limit ordinals.

Theorem 3.9. For a nonempty ordinal x, x is a usual limit ordinal
if and only if there is a limit ordinal y such that

(1) x = y ∪ [y, x), where [y, x) = {z ∈ x | y ≤ z},
(2) every element of [y, x)− {y} is a successor ordinal, and
(3) if p is a subset of [y, x) such that y ∈ p and y ∈ p implies y∪{y} ∈

p, then p = [y, x).

Proof. (⇒) Let y = ∪Lx. Then y is a limit ordinal, y ∈ x and
z ≤ y for all z ∈ ÃLx; hence y is the largest element of Lx. Take any
z ∈ [y, x)−{y}. Then it is clear that z 6= ∅. Suppose z is a limit ordinal.
Since z ∈ x, z ≤ y. However, this is impossible because y ∈ z. Thus z is
a successor ordinal. Since every nonempty ordinal is either a successor
ordinal or a limit ordinal, x = y ∪ [y, x). Since [y, x) is a set of ordinals,
by Theorem 2.5 (2), [y, x) is a well-ordered set. Suppose [y, x) − p 6= ∅
and let l be the least element of [y, x) − p. Then l ∈ [y, x) and l 6= y;
hence by (2), l = u ∪ {u} for some ordinal u. Since y ∈ u ∪ {u} ∈ x,
u ∈ [y, x). Since l is the least element of [y, x) − p, u ∈ p. By the
assumption, l ∈ p, which is a contradiction. Thus p = [y, x).
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(⇐) By (3), x is inductive because y is limit ordinal and by (1) and
(2), y ∈ x and y = ∪ÃLx. Since x is an ordinal, x is a usual limit
ordinal.

Remark 3.10. Since Lω = {∅}, ∪Lω = ∅.

4. Transfinite set

In this section, we introduce a concept of y-inductive sets and using
this, we also introduce the weak transfinite set and present an induc-
tion principle. Using the induction principle, we show that the weak
transfinite set is a transfinite limit ordinal.

Definition 4.1. Let x and y be sets. Then x is called a y-inductive
set if it has the following properties:

(1) y ∈ x,
(2) t ∈ x implies t ∪ {t} ∈ x, and
(3) t ∈ x implies t /∈ y.

Remark 4.2. (1) Every ∅-inductive set is an inductive set.
(2) It is clear that the intersection of all the y-inductive sets is also a

y-inductive set.

Definition 4.3. (1) The intersection of all the y-inductive sets is
called the y-set.

(2) An inductive set y is said to be a super predeccessor of an inductive
set x if the following properties hold:

(a) {t ∈ x | y ≤ t} is a y-set.
(b) y ∩ {t ∈ x | y ≤ t} = ∅.
(c) x = y ∪ {t ∈ x | y ≤ t}.
Remark 4.4. (1) The ∅-set is exactly the set ω of all the naturals.
(2) If y is a super predeccessor of x, then y ∈ x and y ⊂ x.
(3) If y and z are super predeccessors of x, then y = z.

If y is the super predeccessor of x, then we write y = xsp.

In the rest of this paper, we assume ∅ is the super predecessor of the
∅-set.

Definition 4.5. A set x is said to be weak transfinite inductive if it
satisfies the following properties:

(I1) ∅ ∈ x.
(I2) t ∈ x implies t ∪ {t} ∈ x, and



684 Se Hwa Chung

(I3) tsp ∈ x implies t ∈ x for all inductive sets t.

The following is immediate from the above definition:

Theorem 4.6. (1) Every weak transfinite inductive set contains the
∅-set.

(2) The intersection of all the weak transfinite inductive sets is also
a weak transfinite inductive set.

Definition 4.7. The intersection of all the weak transfinite inductive
sets is called the weak transfinite set and is denoted by π.

Corollary 4.8. If p is a subset of π such that
(T1) ∅ ∈ p,
(T2) t ∈ p implies t ∪ {t} ∈ p, and
(T3) tsp ∈ p implies t ∈ p for all inductive sets t, then p = π.

Proof. It is immediate from Theorem 4.6.

Using the above corollary, we have the following theorem:

Theorem 4.9. π is an ordinal.

Proof. First we show that π is the set of ordinals. Let o be the set
of all ordinals in π. It is clear that ∅ ∈ o because ∅ is an ordinal and
∅ ∈ π. Suppose s ∈ o, then by corollary 2.13 s ∪ {s} ∈ o because π
is inductive. Suppose t is an inductive set such that tsp ∈ o and let
u = {s ∈ t | tsp ≤ s}. That is, t = tsp ∪ u. Since tsp ∈ o, by Theorem
2.5 (1), every element of tsp is an ordinal. Now we show that every
element of u is an ordinal. Let k be the set of all s ∈ u such that s is an
ordinal. Clearly tsp ∈ k. Suppose s ∈ k, then s is an ordinal; hence by
corollary 2.13, s ∪ {s} ∈ k because u is inductive. Thus k = u. Hence
every element of t is an ordinal. It remains to show that t is transitive.
First we show that tsp ⊆ pr(t). If s ∈ tsp and y ∈ s, then y ∈ tsp and
s 6= tsp because tsp is transitive. Since tsp ⊂ t, y ∈ t and s 6= t. Hence
tsp ⊆ pr(t). Now we show that u ⊆ pr(t). Let k be the set of all s ∈ u
such that s ∈ pr(t). It is clear that tsp ∈ k because tsp ⊂ t and tsp ∈ t.
Suppose s ∈ k, then s ∈ u. Since u is inductive, s∪{s} ∈ u. Since s ⊂ t
and s ∈ t, s ∪ {s} ⊂ t because t is inductive. That is, s ∪ {s} ∈ pr(t).
Thus s ∪ {s} ∈ k. Hence by the definition of u, k = u. In all, t ∈ o. By
corollary 4.8, o = π.

Now we show that π is transitive. Let p be the set of all t ∈ π such
that t ∈ pr(π). Clearly ∅ ∈ p. Suppose t ∈ p, then t ∪ {t} ∈ π for t ∈ π.
Since t ∈ pr(π) and t ∈ π, t ∪ {t} ⊂ π because π is inductive. Thus
t∪{t} ∈ p. Suppose tsp ∈ p and t is an inductive set, then tsp ∈ π; hence
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by (I3), t ∈ π. Now we show that t ⊂ π. Since tsp ∈ p, tsp ⊂ π. Note
that t = tsp ∪ u, where u denotes {s ∈ t | tsp ≤ s}. It remains to show
that u is a subset of x. Let k be the set of all s ∈ u such that s ∈ π. By
the definition of the tsp, tsp ∈ u. Since tsp ∈ π, tsp ∈ k. Suppose s ∈ k,
then s ∈ u and s ∈ π. Since u and π are both inductive sets, s∪{s} ∈ u
and s ∪ {s} ∈ π; hence s ∪ {s} ∈ k. By the definition of u, k = u and
hence u ⊆ π. Since tsp ∩ u = {tsp} and tsp ⊂ π, t ⊂ π because π /∈ π
and t ∈ π. Thus t ∈ p. By Corollary 4.8, p = π. In all, π is transitive.
In all, π is an ordinal.

Theorem 4.10. π is a transfinite limit ordinal.

Proof. Clearly ∪Lπ = πsp ⊆ π. Let k be the set of all s ∈ π such that
s ∈ π implies s ∈ πsp. Clearly ∅ ∈ k. Suppose s ∈ k. Since π and πsp are
inductive, s ∪ {s} ∈ k for all successor ordinals s. Suppose t is a limit
ordinal and tsp ∈ k. Since π is the transfinite set, t ∈ π; hence t ≤ πsp.
If t = πsp, then πsp ∈ π; by (I3), π ∈ π. However, this is impossible
because π is an ordinal. Hence t ∈ πsp. By Corollary 4.8, k = π. In all,
πsp = π.

Definition 4.11. Every element of π is called an ordinary ordinal.

Using Corollary 4.8, we now introduce the weak transfinite induction
principle which resembles closely the usual formulation of the induction
principle for the set ω of natural s.

Corollary 4.12. Let P (t) be a property involving the ordinary or-
dinal t such that

(a) P (∅),
(b) P (t) implies P (t ∪ {t}) for all t ∈ x, and
(c) P (tsp) implies P (t) for all usual limit ordinals t.
Then P (t) for all ordinary ordinals t.

Proof. Let p = {t ∈ π | P (t)}. Then it is clear that p is a subset of π
which satisfies conditions T1, T2 and T3 of Corollary 4.8. Thus P (t) for
all ordinary ordinals t.
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