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INELASTIC FLOWS OF CURVES ACCORDING TO
EQUIFORM IN GALILEAN SPACE

Dae Won Yoon*

Abstract. In this paper, we derive a set of the partial differen-
tial equations that characterize an inelastic flow of a curve in a 3-
dimensional Galilean space. Also, we give necessary and sufficient
condition for an inelastic flow.

1. Introduction

The flow of a curve is called to be inelastic if the arc-length of a curve
is preserved. Inelastic curve flows have growing importance in many ap-
plications such engineering, computer vision, structural mechanics and
computer animation ([2], [7]). Physically, inelastic curve flows give rise
to motion which no strain energy is induced. The swinging motion of
a cord of fixed length can be described by inelastic curve flows. There
exist such motions in many physical applications.

G. S. Chirikjian and J. W. Burdick([1]) studied applications of inelas-
tic curve flows. M. Gage and R. S. Hamilton([5]) and M. A. Grayson([6])
investigated shrinking of closed plane curves to a circle via the heat equa-
tion. Also, D. Y. Kwon and F. C. Park([9], [10]) derived the evolution
equation for an inelastic plane and space curve. Recently, N. Gurbuz([7])
examined inelastic flows of space-like, time-like and null curve in a 3-
dimensional Minkowski space.

A Galilean space may be considered as the limit case of a pseudo-
Euclidean space in which the isotropic cone degenerates to a plane. The
limit transition corresponds to the limit transition from the special the-
ory of relatively to classical mechanics ([12]). On the study of a Galilean
space, B. Divjak and M. Sipus([3]) investigated the properties of heli-
cal surfaces, ruled screw surfaces and rotation surface in 3-dimensional
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Galilean space G3. Also, A. O. Ogrenmis([11]) studied the Frenet for-
mula and Mannheim curve of AW(k)-type in pseudo-Galilean space.

In this paper, we derive the evolution equations for inelastic flows of
a curve in G3. Furthermore, we give necessary and sufficient condition
for inelastic flows.

2. Preliminaries

The Galilean space G3 is a Cayley-Klein space equipped with the
projective metric of signature (0, 0, +,+). The absolute figure of the
Galilean space consist of an ordered triple {w, f, I}, where w is the ideal
(absolute) plane, f is the line (absolute line) in w and I is the fixed
elliptic involution of points of f .

In the non-homogeneous coordinates the similarity group H8 has the
form

(2.1)

x̄ = a11 + a12x

ȳ = a21 + a22x + a23y cos θ + a23z sin θ

z̄ = a31 + a32x− a23y sin θ + a23z cos θ

where aij and θ are real numbers ([4]). In what follows the real numbers
a12 and a23 will play the special role. In particular, for a12 = a23 = 1,
(2.1) defines the group B6 ⊂ H8 of isometries of the Galilean space G3.

The Galilean scalar product can be written as

〈x,y〉 =

{
x1x2, if x1 6= 0 or x2 6= 0
y1y2 + z1z2, if x1 = 0 and x2 = 0,

where x = (x1, y1, z1) and y = (x2, y2, z2). It leaves invariant the
Galilean norm of the vector x defined by

||x|| =
{

x1, if x1 6= 0√
y2
1 + z2

1 , if x1 = 0.

A curve α : I ⊂ R → G3 of the class C∞ in the Galilean space G3 is
defined by the parametrization

α(s) = (s, y(s), z(s)),

where s is a Galilean invariant arc-length of α. Then the curvature κ(s)
and the torsion τ(s) are given by

κ(s) =
√

ÿ(s)2 + z̈(s)2, τ(s) =
det(α̇(s), α̈(s),

...
α(s))

κ2(s)
,
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respectively.
On the other hand, the Frenet vectors of α(s) in G3 are defined by

t(s) = α̇(s) = (1, ẏ(s), ż(s)),

n(s) =
1

κ(s)
α̈(s) =

1
κ(s)

(0, ÿ(s), z̈(s)),

b(s) =
1

κ(s)
(0,−z̈(s), ÿ(s)).

The vectors t,n,b are called the vector of tangent, principal normal and
binormal of α, respectively. For their derivatives the following Frenet
formula satisfies([cf. 4])

(2.2)

ṫ(s) = κ(s)n(s),

ṅ(s) = τ(s)b(s),

ḃ(s) = −τ(s)n(s).

3. Frenet formulas in equiform geometry in G3

Let α : I → G3 be a curve in the Galilean space G3. We define the
equiform parameter of α by

σ :=
∫

1
ρ
ds =

∫
κds,

where ρ = 1
κ is the radius of curvature of the curve α. Then, we have

(3.1)
ds

dσ
= ρ.

Let h be a homothety with the center in the origin and the coefficient
λ. If we put α̃ = h(α), then it follows

s̃ = λs and ρ̃ = λρ,

where s̃ is the arc-length parameter of α̃ and ρ̃ the radius of curvature
of this curve. Therefore, σ is an equiform invariant parameter of α ([4]).

From now on, we define the Frenet formula of the curve α with respect
to the equiform invariant parameter σ in G3.

The vector
T =

dα

dσ
is called a tangent vector of the curve α. From (2.2) and (3.1) we get

(3.2) T =
dα

ds
· ds

dσ
= ρ · dα

ds
= ρ · t.
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We define the principal normal vector and the binormal vector by

(3.3) N = ρ · n, B = ρ · b.

Then, we easily show that {T, N,B} are an equiform invariant orthonor-
mal frame of the curve α.
On the other hand, the derivations of these vectors with respect to σ
are given by

T′ =
dT
dσ

= ρ̇T + N,

N′ =
dN
dσ

= ρ̇N + ρτB,

B′ =
dB
dσ

= ρτN + ρ̇B.

Definition 3.1. The function K : I → R defined by

K = ρ̇

is called the equiform curvature of the curve α.

Definition 3.2. The function T : I → R defined by

T = ρτ =
τ

κ
is called the equiform torsion of the curve α.

Thus, the formula analogous to the Frenet formula in the equiform
geometry of the Galilean space have the following form

(3.4)

T′ = K · T + N,

N′ = K ·N + T ·N,

B′ = T ·N +K · B.

The equiform parameter σ =
∫

κ(s)ds for closed curves is called the
total curvature, and it plays an important role in global differential ge-
ometry of Euclidean space. Also, the function τ

κ has been already known
as a conical curvature and it also has interesting geometric interpreta-
tion.

4. Inelastic flows of curves according to equiform in G3

We assume that F : [0, l]× [0, w] → G3 is a one parameter family of
smooth curve in the Galilean space G3, where l is the arc-length of initial
curve. Let u be the curve parametrization variable, 0 ≤ u ≤ l. We put
v = ||∂F

∂u ||, from which the arc-length of F is defined by s(u) =
∫ u
0 vdu.
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Also, the operator ∂
∂s is given in terms of u by ∂

∂s = 1
v

∂
∂u and the arc-

length parameter is given by ds = vdu.

On the equiform invariant orthonormal frame {T, N, B} of a curve α in
G3, any flow of F can be given by

(4.1)
∂F

∂t
= fT + gN + hB,

where f, g, h are the tangential, principal normal, binormal speeds of
the curve in G3, respectively. We put s(u, t) =

∫ u
0 vdu, it is called the

arc-length variation of F . From this, the requirement that the curve not
be subject to any elongation or compression can be expressed by the
condition

(4.2)
∂

∂t
s(u, t) =

∫ u

0

∂v

∂t
du = 0,

for all u ∈ [0, l].

Definition 4.1. A curve evolution F (u, t) and its flow ∂F
∂t in G3 are

said to be inelastic if

∂

∂t

∣∣∣∣
∣∣∣∣
∂F

∂u

∣∣∣∣
∣∣∣∣ = 0.

Theorem 4.2. (Necessary and Sufficient Conditions for an Inelastic
Flow) Let ∂F

∂t = fT+gN+hB be a flow of F in G3. The flow is inelastic
if and only if

(4.3)
∂v

∂t
=

∂f

∂u
+ vfK.

Proof. From the definition of F , we have

(4.4) v2 =
〈

∂F

∂u
,
∂F

∂u

〉
.

Since u and t are independent coordinates, ∂
∂u and ∂

∂t commute. So, by
differentiating of (4.4) we have
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2v
∂v

∂t
=

∂

∂t

〈
∂F

∂u
,
∂F

∂u

〉

= 2
〈

∂F

∂u
,

∂

∂u
(
∂F

∂t
)
〉

= 2
〈

∂F

∂u
,

∂

∂u
(fT + gN + hB)

〉

= 2v
〈

T, (
∂f

∂u
+ vfK)T + (vf +

∂g

∂u
+ vgK + vhT )N

+(vgT +
∂h

∂u
+ vhK)B

〉

= 2v
(

∂f

∂u
+ vfK

)
.

Lemma 4.3. The flow ∂H
∂t = fT+ gN+hB of the curve F is inelastic

if and only if

∂f

∂s
= −fK.

Proof. From Theorem 4.2,

∂

∂t
s(u, t) =

∫ u

0

∂v

∂t
du

=
∫ u

0
(
∂f

∂u
+ vfK)du

= 0

for all u ∈ [0, l]. It follows that ∂f
∂u = −vfK or ∂f

∂s = −fK. The argument
can be reversed to show sufficient, completing the proof.

Lemma 4.4.

∂T
∂t

=
(

∂g

∂s
+ f + gK + hT

)
N +

(
∂h

∂s
+ gT + hK

)
B,

∂N
∂t

= −
(

∂g

∂s
+ f + gK + hT

)
T + ΨB,

∂B
∂t

= −
(

∂h

∂s
+ gT + hK

)
T−ΨN, Ψ =

〈
∂N
∂t

, B
〉

.
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Proof. Using the Frenet formula and Lemma 4.3, we calculate

∂T
∂t

=
∂

∂t

∂F

∂s
=

∂

∂s

∂F

∂t
=

∂

∂s
(fT + gN + fB)

=
∂f

∂s
T +

∂g

∂s
N +

∂h

∂s
B + fKT + fN + gKN + gT B + hT N + hKB

=
(

∂g

∂s
+ f + gK + hT

)
N +

(
∂h

∂s
+ gT + hK

)
B.

Differentiating Frenet frame with respect to t, we obtain:

0 =
∂

∂t
〈T, N〉 =

〈
∂T
∂t

,N
〉

+
〈

T,
∂N
∂t

〉

=
(

∂g

∂s
+ f + gK + hT

)
+

〈
T,

∂N
∂t

〉
.

0 =
∂

∂t
〈T, B〉 =

〈
∂T
∂t

, B
〉

+
〈

T,
∂B
∂t

〉
=

(
∂h

∂s
+ gT + hK

)
+

〈
T,

∂B
∂t

〉
.

0 =
∂

∂t
〈N, B〉 =

〈
∂N
∂t

, B
〉

+
〈

N,
∂B
∂t

〉
= Ψ +

〈
N,

∂B
∂t

〉
.

From the above equations, we obtain ∂N
∂t = −

(
∂g
∂s + f + gK + hT

)
T +

ΨB and ∂B
∂t = − (

∂h
∂s + gT + hK)

T−ΨN.

The following theorem states the conditions on the curvature and the
torsion for the curve flow F (u, t) to be inelastic.

Theorem 4.5. (Equations for Inelastic Evolution) If the curve flow
∂F
∂t = fT + gN + hB is inelastic, then the following system of partial
differential equations holds:

∂K
∂t

=
∂g

∂s
+ f + gK + hT .

∂T
∂t

= −
(

∂h

∂s
+ gT + hK

)
.

Ψ =
∂2h

∂s2
+

∂

∂s
(gT ) +

∂

∂s
(hK) + T

(
∂g

∂s
+ f + gK + hT

)
.

Proof. Noting that ∂
∂s

∂T
∂t = ∂

∂t
∂T
∂s ,

∂

∂s

∂T
∂t

=
∂

∂s

(
(
∂g

∂s
+ f + gK + hT )N + (

∂h

∂s
+ gT + hK)B

)
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=
(

∂2g

∂s2
+

∂f

∂s
+

∂

∂s
(gK) +

∂

∂s
(hT )

)
N

+
(

∂2h

∂s2
+

∂

∂s
(gT ) +

∂

∂s
(hK)

)
B

+
(

∂g

∂s
+ f + gK + hT

)
(KN + T B)

+
(

∂h

∂s
+ gT + hK

)
(T N +KB).

By using Lemma 4.4, we have the following equation:

∂

∂t

∂T
∂s

=
∂

∂t
(KT + N)

=
∂K
∂t

T +K
(

∂g

∂s
+ f + gK + hT

)
N +K

(
∂h

∂s
+ gT + hK

)
B

−
(

∂g

∂s
+ f + gK + hT

)
T + ΨB.

By combining the above two equations, we have

∂K
∂t

=
∂g

∂s
+ f + gK + hT

and

Ψ =
∂2h

∂s2
+

∂

∂s
(gT ) +

∂

∂s
(hK) + T

(
∂g

∂s
+ f + gK + hT

)
.

Since ∂
∂s

∂B
∂t = ∂

∂t
∂B
∂s , we have from Lemma 4.4

∂

∂s

∂B
∂t

=
∂

∂s

(
−(

∂h

∂s
+ gT + hK)T−ΨN

)

= −
(

∂2h

∂s2
+

∂

∂s
(gT ) +

∂

∂s
(hK)

)
T

−
(

∂h

∂s
+ gT + hK

)
(KT + N)

− ∂Ψ
∂s

N−Ψ(KN + T B).
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By using Frenet formula, we obtain
∂

∂t

∂B
∂s

=
∂

∂t
(T N +KB)

=
∂T
∂t

N +
∂K
∂t

B− T
(

∂g

∂s
+ f + gK + hT

)
T

+ T ΨB−K
(

∂h

∂s
+ gT + hK

)
T−KΨN.

Thus we have ∂T
∂t = − (

∂h
∂s + gT + hK)

.
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