INELASTIC FLOWS OF CURVES ACCORDING TO EQUIFORM IN GALILEAN SPACE

Dae Won Yoon*

Abstract

In this paper, we derive a set of the partial differential equations that characterize an inelastic flow of a curve in a 3dimensional Galilean space. Also, we give necessary and sufficient condition for an inelastic flow.

1. Introduction

The flow of a curve is called to be inelastic if the arc-length of a curve is preserved. Inelastic curve flows have growing importance in many applications such engineering, computer vision, structural mechanics and computer animation ([2], [7]). Physically, inelastic curve flows give rise to motion which no strain energy is induced. The swinging motion of a cord of fixed length can be described by inelastic curve flows. There exist such motions in many physical applications.
G. S. Chirikjian and J. W. Burdick([1]) studied applications of inelastic curve flows. M. Gage and R. S. Hamilton([5]) and M. A. Grayson([6]) investigated shrinking of closed plane curves to a circle via the heat equation. Also, D. Y. Kwon and F. C. Park([9], [10]) derived the evolution equation for an inelastic plane and space curve. Recently, N. Gurbuz([7]) examined inelastic flows of space-like, time-like and null curve in a 3dimensional Minkowski space.

A Galilean space may be considered as the limit case of a pseudoEuclidean space in which the isotropic cone degenerates to a plane. The limit transition corresponds to the limit transition from the special theory of relatively to classical mechanics ([12]). On the study of a Galilean space, B. Divjak and M. Sipus([3]) investigated the properties of helical surfaces, ruled screw surfaces and rotation surface in 3-dimensional

[^0]Galilean space G_{3}. Also, A. O. Ogrenmis([11]) studied the Frenet formula and Mannheim curve of $\mathrm{AW}(k)$-type in pseudo-Galilean space.

In this paper, we derive the evolution equations for inelastic flows of a curve in G_{3}. Furthermore, we give necessary and sufficient condition for inelastic flows.

2. Preliminaries

The Galilean space G_{3} is a Cayley-Klein space equipped with the projective metric of signature $(0,0,+,+)$. The absolute figure of the Galilean space consist of an ordered triple $\{w, f, I\}$, where w is the ideal (absolute) plane, f is the line (absolute line) in w and I is the fixed elliptic involution of points of f.

In the non-homogeneous coordinates the similarity group H_{8} has the form

$$
\begin{align*}
& \bar{x}=a_{11}+a_{12} x \\
& \bar{y}=a_{21}+a_{22} x+a_{23} y \cos \theta+a_{23} z \sin \theta \tag{2.1}\\
& \bar{z}=a_{31}+a_{32} x-a_{23} y \sin \theta+a_{23} z \cos \theta
\end{align*}
$$

where $a_{i j}$ and θ are real numbers ([4]). In what follows the real numbers a_{12} and a_{23} will play the special role. In particular, for $a_{12}=a_{23}=1$, (2.1) defines the group $B_{6} \subset H_{8}$ of isometries of the Galilean space G_{3}.

The Galilean scalar product can be written as

$$
\langle\mathbf{x}, \mathbf{y}\rangle= \begin{cases}x_{1} x_{2}, & \text { if } x_{1} \neq 0 \quad \text { or } \quad x_{2} \neq 0 \\ y_{1} y_{2}+z_{1} z_{2}, & \text { if } x_{1}=0 \quad \text { and } \quad x_{2}=0\end{cases}
$$

where $\mathbf{x}=\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathbf{y}=\left(x_{2}, y_{2}, z_{2}\right)$. It leaves invariant the Galilean norm of the vector \mathbf{x} defined by

$$
\|\mathbf{x}\|=\left\{\begin{array}{lll}
x_{1}, & \text { if } & x_{1} \neq 0 \\
\sqrt{y_{1}^{2}+z_{1}^{2}}, & \text { if } & x_{1}=0
\end{array}\right.
$$

A curve $\alpha: I \subset \mathbb{R} \rightarrow G_{3}$ of the class C^{∞} in the Galilean space G_{3} is defined by the parametrization

$$
\alpha(s)=(s, y(s), z(s)),
$$

where s is a Galilean invariant arc-length of α. Then the curvature $\kappa(s)$ and the torsion $\tau(s)$ are given by

$$
\kappa(s)=\sqrt{\ddot{y}(s)^{2}+\ddot{z}(s)^{2}}, \quad \tau(s)=\frac{\operatorname{det}(\dot{\alpha}(s), \ddot{\alpha}(s), \dddot{\alpha}(s))}{\kappa^{2}(s)},
$$

respectively.
On the other hand, the Frenet vectors of $\alpha(s)$ in G_{3} are defined by

$$
\begin{aligned}
\mathbf{t}(s) & =\dot{\alpha}(s)=(1, \dot{y}(s), \dot{z}(s)) \\
\mathbf{n}(s) & =\frac{1}{\kappa(s)} \ddot{\alpha}(s)=\frac{1}{\kappa(s)}(0, \ddot{y}(s), \ddot{z}(s)), \\
\mathbf{b}(s) & =\frac{1}{\kappa(s)}(0,-\ddot{z}(s), \ddot{y}(s))
\end{aligned}
$$

The vectors $\mathbf{t}, \mathbf{n}, \mathbf{b}$ are called the vector of tangent, principal normal and binormal of α, respectively. For their derivatives the following Frenet formula satisfies([cf. 4])

$$
\begin{align*}
\dot{\mathbf{t}}(s) & =\kappa(s) \mathbf{n}(s) \\
\dot{\mathbf{n}}(s) & =\tau(s) \mathbf{b}(s) \tag{2.2}\\
\dot{\mathbf{b}}(s) & =-\tau(s) \mathbf{n}(s)
\end{align*}
$$

3. Frenet formulas in equiform geometry in G_{3}

Let $\alpha: I \rightarrow G_{3}$ be a curve in the Galilean space G_{3}. We define the equiform parameter of α by

$$
\sigma:=\int \frac{1}{\rho} d s=\int \kappa d s
$$

where $\rho=\frac{1}{\kappa}$ is the radius of curvature of the curve α. Then, we have

$$
\begin{equation*}
\frac{d s}{d \sigma}=\rho \tag{3.1}
\end{equation*}
$$

Let h be a homothety with the center in the origin and the coefficient λ. If we put $\tilde{\alpha}=h(\alpha)$, then it follows

$$
\tilde{s}=\lambda s \quad \text { and } \quad \tilde{\rho}=\lambda \rho,
$$

where \tilde{s} is the arc-length parameter of $\tilde{\alpha}$ and $\tilde{\rho}$ the radius of curvature of this curve. Therefore, σ is an equiform invariant parameter of α ([4]).

From now on, we define the Frenet formula of the curve α with respect to the equiform invariant parameter σ in G_{3}.

The vector

$$
\mathrm{T}=\frac{d \alpha}{d \sigma}
$$

is called a tangent vector of the curve α. From (2.2) and (3.1) we get

$$
\begin{equation*}
\mathrm{T}=\frac{d \alpha}{d s} \cdot \frac{d s}{d \sigma}=\rho \cdot \frac{d \alpha}{d s}=\rho \cdot \mathbf{t} \tag{3.2}
\end{equation*}
$$

We define the principal normal vector and the binormal vector by

$$
\begin{equation*}
\mathrm{N}=\rho \cdot \mathbf{n}, \quad \mathrm{B}=\rho \cdot \mathbf{b} \tag{3.3}
\end{equation*}
$$

Then, we easily show that $\{\mathrm{T}, \mathrm{N}, \mathrm{B}\}$ are an equiform invariant orthonormal frame of the curve α.
On the other hand, the derivations of these vectors with respect to σ are given by

$$
\begin{aligned}
\mathrm{T}^{\prime} & =\frac{d \mathrm{~T}}{d \sigma}=\dot{\rho} \mathrm{T}+\mathrm{N} \\
\mathrm{~N}^{\prime} & =\frac{d \mathrm{~N}}{d \sigma}=\dot{\rho} \mathrm{N}+\rho \tau \mathrm{B} \\
\mathrm{~B}^{\prime} & =\frac{d \mathrm{~B}}{d \sigma}=\rho \tau \mathrm{N}+\dot{\rho} \mathrm{B} .
\end{aligned}
$$

Definition 3.1. The function $\mathcal{K}: I \rightarrow \mathbb{R}$ defined by

$$
\mathcal{K}=\dot{\rho}
$$

is called the equiform curvature of the curve α.
Definition 3.2. The function $\mathcal{T}: I \rightarrow \mathbb{R}$ defined by

$$
\mathcal{T}=\rho \tau=\frac{\tau}{\kappa}
$$

is called the equiform torsion of the curve α.
Thus, the formula analogous to the Frenet formula in the equiform geometry of the Galilean space have the following form

$$
\begin{align*}
\mathrm{T}^{\prime} & =\mathcal{K} \cdot \mathrm{T}+\mathrm{N} \\
\mathrm{~N}^{\prime} & =\mathcal{K} \cdot \mathrm{N}+\mathcal{T} \cdot \mathrm{N} \tag{3.4}\\
\mathrm{~B}^{\prime} & =\mathcal{T} \cdot \mathrm{N}+\mathcal{K} \cdot \mathrm{B} .
\end{align*}
$$

The equiform parameter $\sigma=\int \kappa(s) d s$ for closed curves is called the total curvature, and it plays an important role in global differential geometry of Euclidean space. Also, the function $\frac{\tau}{\kappa}$ has been already known as a conical curvature and it also has interesting geometric interpretation.

4. Inelastic flows of curves according to equiform in G_{3}

We assume that $F:[0, l] \times[0, w] \rightarrow G_{3}$ is a one parameter family of smooth curve in the Galilean space G_{3}, where l is the arc-length of initial curve. Let u be the curve parametrization variable, $0 \leq u \leq l$. We put $v=\left\|\frac{\partial F}{\partial u}\right\|$, from which the arc-length of F is defined by $s(u)=\int_{0}^{u} v d u$.

Also, the operator $\frac{\partial}{\partial s}$ is given in terms of u by $\frac{\partial}{\partial s}=\frac{1}{v} \frac{\partial}{\partial u}$ and the arclength parameter is given by $d s=v d u$.
On the equiform invariant orthonormal frame $\{\mathrm{T}, \mathrm{N}, \mathrm{B}\}$ of a curve α in G_{3}, any flow of F can be given by

$$
\begin{equation*}
\frac{\partial F}{\partial t}=f \mathrm{~T}+g \mathrm{~N}+h \mathrm{~B} \tag{4.1}
\end{equation*}
$$

where f, g, h are the tangential, principal normal, binormal speeds of the curve in G_{3}, respectively. We put $s(u, t)=\int_{0}^{u} v d u$, it is called the arc-length variation of F. From this, the requirement that the curve not be subject to any elongation or compression can be expressed by the condition

$$
\begin{equation*}
\frac{\partial}{\partial t} s(u, t)=\int_{0}^{u} \frac{\partial v}{\partial t} d u=0 \tag{4.2}
\end{equation*}
$$

for all $u \in[0, l]$.

Definition 4.1. A curve evolution $F(u, t)$ and its flow $\frac{\partial F}{\partial t}$ in G_{3} are said to be inelastic if

$$
\frac{\partial}{\partial t}\left\|\frac{\partial F}{\partial u}\right\|=0
$$

Theorem 4.2. (Necessary and Sufficient Conditions for an Inelastic Flow) Let $\frac{\partial F}{\partial t}=f \mathrm{~T}+g \mathrm{~N}+h \mathrm{~B}$ be a flow of F in G_{3}. The flow is inelastic if and only if

$$
\begin{equation*}
\frac{\partial v}{\partial t}=\frac{\partial f}{\partial u}+v f \mathcal{K} \tag{4.3}
\end{equation*}
$$

Proof. From the definition of F, we have

$$
\begin{equation*}
v^{2}=\left\langle\frac{\partial F}{\partial u}, \frac{\partial F}{\partial u}\right\rangle \tag{4.4}
\end{equation*}
$$

Since u and t are independent coordinates, $\frac{\partial}{\partial u}$ and $\frac{\partial}{\partial t}$ commute. So, by differentiating of (4.4) we have

$$
\begin{aligned}
2 v \frac{\partial v}{\partial t} & =\frac{\partial}{\partial t}\left\langle\frac{\partial F}{\partial u}, \frac{\partial F}{\partial u}\right\rangle \\
& =2\left\langle\frac{\partial F}{\partial u}, \frac{\partial}{\partial u}\left(\frac{\partial F}{\partial t}\right)\right\rangle \\
& =2\left\langle\frac{\partial F}{\partial u}, \frac{\partial}{\partial u}(f \mathrm{~T}+g \mathrm{~N}+h \mathrm{~B})\right\rangle \\
& =2 v\left\langle\mathrm{~T},\left(\frac{\partial f}{\partial u}+v f \mathcal{K}\right) \mathrm{T}+\left(v f+\frac{\partial g}{\partial u}+v g \mathcal{K}+v h \mathcal{T}\right) \mathrm{N}\right. \\
& \left.+\left(v g \mathcal{T}+\frac{\partial h}{\partial u}+v h \mathcal{K}\right) \mathrm{B}\right\rangle \\
& =2 v\left(\frac{\partial f}{\partial u}+v f \mathcal{K}\right) .
\end{aligned}
$$

Lemma 4.3. The flow $\frac{\partial H}{\partial t}=f \mathrm{~T}+g \mathrm{~N}+h \mathrm{~B}$ of the curve F is inelastic if and only if

$$
\frac{\partial f}{\partial s}=-f \mathcal{K} .
$$

Proof. From Theorem 4.2,

$$
\begin{aligned}
\frac{\partial}{\partial t} s(u, t) & =\int_{0}^{u} \frac{\partial v}{\partial t} d u \\
& =\int_{0}^{u}\left(\frac{\partial f}{\partial u}+v f \mathcal{K}\right) d u \\
& =0
\end{aligned}
$$

for all $u \in[0, l]$. It follows that $\frac{\partial f}{\partial u}=-v f \mathcal{K}$ or $\frac{\partial f}{\partial s}=-f \mathcal{K}$. The argument can be reversed to show sufficient, completing the proof.

Lemma 4.4.

$$
\begin{aligned}
& \frac{\partial \mathrm{T}}{\partial t}=\left(\frac{\partial g}{\partial s}+f+g \mathcal{K}+h \mathcal{T}\right) \mathrm{N}+\left(\frac{\partial h}{\partial s}+g \mathcal{T}+h \mathcal{K}\right) \mathrm{B}, \\
& \frac{\partial \mathrm{~N}}{\partial t}=-\left(\frac{\partial g}{\partial s}+f+g \mathcal{K}+h \mathcal{T}\right) \mathrm{T}+\Psi \mathrm{B}, \\
& \frac{\partial \mathrm{~B}}{\partial t}=-\left(\frac{\partial h}{\partial s}+g \mathcal{T}+h \mathcal{K}\right) \mathrm{T}-\Psi \mathrm{N}, \quad \Psi=\left\langle\frac{\partial \mathrm{N}}{\partial t}, \mathrm{~B}\right\rangle .
\end{aligned}
$$

Proof. Using the Frenet formula and Lemma 4.3, we calculate

$$
\begin{aligned}
\frac{\partial \mathrm{T}}{\partial t} & =\frac{\partial}{\partial t} \frac{\partial F}{\partial s}=\frac{\partial}{\partial s} \frac{\partial F}{\partial t}=\frac{\partial}{\partial s}(f \mathrm{~T}+g \mathrm{~N}+f \mathrm{~B}) \\
& =\frac{\partial f}{\partial s} \mathrm{~T}+\frac{\partial g}{\partial s} \mathrm{~N}+\frac{\partial h}{\partial s} \mathrm{~B}+f \mathcal{K} \mathrm{~T}+f \mathrm{~N}+g \mathcal{K} \mathrm{~N}+g \mathcal{T} \mathrm{~B}+h \mathcal{T} \mathrm{~N}+h \mathcal{K} \mathrm{~B} \\
& =\left(\frac{\partial g}{\partial s}+f+g \mathcal{K}+h \mathcal{T}\right) \mathrm{N}+\left(\frac{\partial h}{\partial s}+g \mathcal{T}+h \mathcal{K}\right) \mathrm{B}
\end{aligned}
$$

Differentiating Frenet frame with respect to t, we obtain:

$$
\begin{aligned}
& 0=\frac{\partial}{\partial t}\langle\mathrm{~T}, \mathrm{~N}\rangle=\left\langle\frac{\partial \mathrm{T}}{\partial t}, \mathrm{~N}\right\rangle+\left\langle\mathrm{T}, \frac{\partial \mathrm{~N}}{\partial t}\right\rangle \\
& =\left(\frac{\partial g}{\partial s}+f+g \mathcal{K}+h \mathcal{T}\right)+\left\langle\mathrm{T}, \frac{\partial \mathrm{~N}}{\partial t}\right\rangle . \\
& 0=\frac{\partial}{\partial t}\langle\mathrm{~T}, \mathrm{~B}\rangle=\left\langle\frac{\partial \mathrm{T}}{\partial t}, \mathrm{~B}\right\rangle+\left\langle\mathrm{T}, \frac{\partial \mathrm{~B}}{\partial t}\right\rangle=\left(\frac{\partial h}{\partial s}+g \mathcal{T}+h \mathcal{K}\right)+\left\langle\mathrm{T}, \frac{\partial \mathrm{~B}}{\partial t}\right\rangle . \\
& 0=\frac{\partial}{\partial t}\langle\mathrm{~N}, \mathrm{~B}\rangle=\left\langle\frac{\partial \mathrm{N}}{\partial t}, \mathrm{~B}\right\rangle+\left\langle\mathrm{N}, \frac{\partial \mathrm{~B}}{\partial t}\right\rangle=\Psi+\left\langle\mathrm{N}, \frac{\partial \mathrm{~B}}{\partial t}\right\rangle .
\end{aligned}
$$

From the above equations, we obtain $\frac{\partial \mathrm{N}}{\partial t}=-\left(\frac{\partial g}{\partial s}+f+g \mathcal{K}+h \mathcal{T}\right) \mathrm{T}+$ $\Psi \mathrm{B}$ and $\frac{\partial \mathrm{B}}{\partial t}=-\left(\frac{\partial h}{\partial s}+g \mathcal{T}+h \mathcal{K}\right) \mathrm{T}-\Psi \mathrm{N}$.

The following theorem states the conditions on the curvature and the torsion for the curve flow $F(u, t)$ to be inelastic.

THEOREM 4.5. (Equations for Inelastic Evolution) If the curve flow $\frac{\partial F}{\partial t}=f \mathrm{~T}+g \mathrm{~N}+h \mathrm{~B}$ is inelastic, then the following system of partial differential equations holds:

$$
\begin{aligned}
\frac{\partial \mathcal{K}}{\partial t} & =\frac{\partial g}{\partial s}+f+g \mathcal{K}+h \mathcal{T} \\
\frac{\partial \mathcal{T}}{\partial t} & =-\left(\frac{\partial h}{\partial s}+g \mathcal{T}+h \mathcal{K}\right) \\
\Psi & =\frac{\partial^{2} h}{\partial s^{2}}+\frac{\partial}{\partial s}(g \mathcal{T})+\frac{\partial}{\partial s}(h \mathcal{K})+\mathcal{T}\left(\frac{\partial g}{\partial s}+f+g \mathcal{K}+h \mathcal{T}\right)
\end{aligned}
$$

Proof. Noting that $\frac{\partial}{\partial s} \frac{\partial \mathrm{~T}}{\partial t}=\frac{\partial}{\partial t} \frac{\partial \mathrm{~T}}{\partial s}$,

$$
\frac{\partial}{\partial s} \frac{\partial \mathrm{~T}}{\partial t}=\frac{\partial}{\partial s}\left(\left(\frac{\partial g}{\partial s}+f+g \mathcal{K}+h \mathcal{T}\right) \mathrm{N}+\left(\frac{\partial h}{\partial s}+g \mathcal{T}+h \mathcal{K}\right) \mathrm{B}\right)
$$

$$
\begin{aligned}
=(& \left.\frac{\partial^{2} g}{\partial s^{2}}+\frac{\partial f}{\partial s}+\frac{\partial}{\partial s}(g \mathcal{K})+\frac{\partial}{\partial s}(h \mathcal{T})\right) \mathrm{N} \\
& +\left(\frac{\partial^{2} h}{\partial s^{2}}+\frac{\partial}{\partial s}(g \mathcal{T})+\frac{\partial}{\partial s}(h \mathcal{K})\right) \mathrm{B} \\
& +\left(\frac{\partial g}{\partial s}+f+g \mathcal{K}+h \mathcal{T}\right)(\mathcal{K} \mathrm{N}+\mathcal{T} \mathrm{B}) \\
& +\left(\frac{\partial h}{\partial s}+g \mathcal{T}+h \mathcal{K}\right)(\mathcal{T} \mathrm{N}+\mathcal{K} \mathrm{B})
\end{aligned}
$$

By using Lemma 4.4, we have the following equation:

$$
\begin{aligned}
\frac{\partial}{\partial t} \frac{\partial \mathrm{~T}}{\partial s}= & \frac{\partial}{\partial t}(\mathcal{K} \mathrm{~T}+\mathrm{N}) \\
= & \frac{\partial \mathcal{K}}{\partial t} \mathrm{~T}+\mathcal{K}\left(\frac{\partial g}{\partial s}+f+g \mathcal{K}+h \mathcal{T}\right) \mathrm{N}+\mathcal{K}\left(\frac{\partial h}{\partial s}+g \mathcal{T}+h \mathcal{K}\right) \mathrm{B} \\
& -\left(\frac{\partial g}{\partial s}+f+g \mathcal{K}+h \mathcal{T}\right) \mathrm{T}+\Psi \mathrm{B}
\end{aligned}
$$

By combining the above two equations, we have

$$
\frac{\partial \mathcal{K}}{\partial t}=\frac{\partial g}{\partial s}+f+g \mathcal{K}+h \mathcal{T}
$$

and

$$
\Psi=\frac{\partial^{2} h}{\partial s^{2}}+\frac{\partial}{\partial s}(g \mathcal{T})+\frac{\partial}{\partial s}(h \mathcal{K})+\mathcal{T}\left(\frac{\partial g}{\partial s}+f+g \mathcal{K}+h \mathcal{T}\right)
$$

Since $\frac{\partial}{\partial s} \frac{\partial \mathrm{~B}}{\partial t}=\frac{\partial}{\partial t} \frac{\partial \mathrm{~B}}{\partial s}$, we have from Lemma 4.4

$$
\begin{aligned}
\frac{\partial}{\partial s} \frac{\partial \mathrm{~B}}{\partial t}= & \frac{\partial}{\partial s}\left(-\left(\frac{\partial h}{\partial s}+g \mathcal{T}+h \mathcal{K}\right) \mathrm{T}-\Psi \mathrm{N}\right) \\
= & -\left(\frac{\partial^{2} h}{\partial s^{2}}+\frac{\partial}{\partial s}(g \mathcal{T})+\frac{\partial}{\partial s}(h \mathcal{K})\right) \mathrm{T} \\
& -\left(\frac{\partial h}{\partial s}+g \mathcal{T}+h \mathcal{K}\right)(\mathcal{K} \mathrm{T}+\mathrm{N}) \\
& -\frac{\partial \Psi}{\partial s} \mathrm{~N}-\Psi(\mathcal{K} \mathrm{N}+\mathcal{T} \mathrm{B})
\end{aligned}
$$

By using Frenet formula, we obtain

$$
\begin{aligned}
\frac{\partial}{\partial t} \frac{\partial \mathrm{~B}}{\partial s}= & \frac{\partial}{\partial t}(\mathcal{T} \mathrm{~N}+\mathcal{K} \mathrm{B}) \\
= & \frac{\partial \mathcal{T}}{\partial t} \mathrm{~N}+\frac{\partial \mathcal{K}}{\partial t} \mathrm{~B}-\mathcal{T}\left(\frac{\partial g}{\partial s}+f+g \mathcal{K}+h \mathcal{T}\right) \mathrm{T} \\
& +\mathcal{T} \Psi \mathrm{B}-\mathcal{K}\left(\frac{\partial h}{\partial s}+g \mathcal{T}+h \mathcal{K}\right) \mathrm{T}-\mathcal{K} \Psi \mathrm{N}
\end{aligned}
$$

Thus we have $\frac{\partial \mathcal{T}}{\partial t}=-\left(\frac{\partial h}{\partial s}+g \mathcal{T}+h \mathcal{K}\right)$.

References

[1] G. S. Chirikjian and J. W. Burdick, Kinematics of hyper-redundant manipulation, In Proc. ASME Mechanisms Conference (1990), 391-396.
[2] M, Desbrun, M.-P. Cani-Gascuel, Active implicit surface for animation, in: Proc. Graphics Interface-Canadian Inf. Process. Soc. (1998), 143-150.
[3] B. Divjak and M. Sipus, Some special surfaces in the pseudo-Galilean space, Acta Math. Hungar. 118 (2008), 209-229.
[4] Z. Erjavec and B. Divjak, The equiform differential geometry of curves in the pseudo-Galilean space, Math. Communications 13 (2008), 321-332.
[5] M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Diff. Geom, 23 (1986), 69-96.
[6] M. A. Grayson, The heat equation shrinks embeded plane curves to round points, J. Diff. Geom, 26 (1987), 285-314.
[7] N. Gurbuz, Inextensible flows of spacelike, timelike and null curves, Int. J. Contemp. Math. Sciences. 4 (2009), 1599-1604.
[8] M. Kass, A. Witkin and D. Terzopoulo, Snakes: Active contour molels, In Proc. $1^{\text {st }}$ Int. Confoerence on Compter Vision (1986), 259-268.
[9] D. Y. Kwon and F. C. Park, Evolution of inelastic plane curves, Applied Math. Letters 12 (1999), 115-119.
[10] D. Y. Kwon and F. C. Park, Inextensible flows of curves and developable surfaces, Applied Math. Letters 18 (2005), 1156-1162.
[11] A. O. Ogrenmis, On curvatures of a frenet curve in the pseudo-Galilean space ${ }_{1}^{3}$, Inter. J. Phys. Sci. 5 (2010), 2363-2365.
[12] I. Yaglom, A simple non-Euclidean geometry and its physical basis, SprigerVerlag, New York Inc (1979).

Department of Mathematics Education and RINS
Gyeongsang National University
Jinju 660-701, Republic of Korea
E-mail: dwyoon@gnu.ac.kr

[^0]: Received March 14, 2011; Accepted November 18, 2011.
 2010 Mathematics Subject Classification: Primary 53A35; Secondary 53C44.
 Key words and phrases: Galilean space, Inelastic flow, equiform geometry, Frenet frame.

