# DIFFEOMORPHISMS WITH ROBUSTLY AVERAGE SHADOWING 

Keonhee Lee*, Manseob Lee**, and Gang Lu***<br>Abstract. In this paper, we prove that for $C^{1}$ generically, if every hyperbolic periodic point in a chain component is uniformly far away from being nonhyperbolic, and it is $C^{1}$-robustly average shadowable, then the chain component is hyperbolic.

## 1. Introduction

Let $M$ be a closed manifold, and let $\operatorname{Diff}(M)$ be the space of diffeomorphisms of $M$ endowed with the $C^{1}$-topology. Denote by $d$ the distance on $M$ induced from a Riemannian metric $\|\cdot\|$ on the tangent bundle $T M$. Let $f \in \operatorname{Diff}(M)$.

For $\delta>0$ a sequence $\left\{x_{i}\right\}_{i=-\infty}^{\infty}$ in $M$ is called a $\delta$-average pseudo orbit of $f \in \operatorname{Diff}(M)$ if there is a natural number $N=N(\delta)>0$ such that for all $n \geq N$, and $k \in \mathbb{Z}$,

$$
\frac{1}{n} \sum_{i=1}^{n-1} d\left(f\left(x_{i+k}\right), x_{i+k+1}\right)<\delta
$$

We say that $f$ has the average- shadowing property if for every $\epsilon>0$ there is a $\delta>0$ such that every $\delta$-average pseudo orbit $\left\{x_{i}\right\}_{i=-\infty}^{\infty}$ is $\epsilon$-shadowed in average by some $z \in M$, that is,

[^0]$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} d\left(f^{i}(z), x_{i}\right)<\epsilon .
$$

Let $\Lambda \subset M$ be a closed $f$-invariant set. We say that $\left.f\right|_{\Lambda}$ has the average shadowing property if for every $\epsilon>0$ there is $\delta>0$ such that for any $\delta$-average pseudo orbit $\left\{x_{i}\right\}_{i=a}^{b} \subset \Lambda(-\infty \leq a<b \leq \infty)$ of $f$, $\epsilon$-shadowed in average by some $z \in \Lambda$.
For $\delta>0$, a sequence of points $\left\{x_{i}\right\}_{i=a}^{b}(-\infty \leq a<b \leq \infty)$ in $M$ is called a $\delta$-pseudo orbit of $f$ if $d\left(f\left(x_{i}\right), x_{i+1}\right)<\delta$ for all $a \leq i \leq b-1$. We say that $f$ has the shadowing property if for any $\epsilon>0$ there is $\delta>0$ such that for any $\delta$-pseudo orbit $\left\{x_{i}\right\}_{i \in \mathbb{Z}}$ of $f$ there is $y \in M$ such that $d\left(f^{i}(y), x_{i}\right)<\epsilon$, for $i \in \mathbb{Z}$. For given $x, y \in M$, we write $x \rightsquigarrow y$ if for any $\delta>0$, there is a $\delta$-pseudo orbit $\left\{x_{i}\right\}_{i=a}^{b}(a<b)$ of $f$ such that $x_{a}=x$ and $x_{b}=y$. The set of points $\{x \in M: x \rightarrow x\}$ is called the chain recurrent set of $f$ and is denoted by $\mathcal{R}(f)$. The relation $m$ induces on $\mathcal{R}(f)$ an equivalence relation, whose classes are called chain components of $f$. Denote by $C_{f}(p)=\{x \in M: x \rightsquigarrow p$ and $p \rightsquigarrow x\}$, where $p$ is a hyperbolic saddle. Note that if $p$ is not hyperbolic saddle then $C_{f}(p)=p$. Thus in this paper, we consider that $p$ is a hyperbolic saddle.

It is well known that if $p$ is a hyperbolic periodic point $f$ with period $k$ then the sets

$$
\begin{gathered}
W^{s}(p)=\left\{x \in M: f^{k n}(x) \rightarrow p \text { as } n \rightarrow \infty\right\} \text { and } \\
W^{u}(p)=\left\{x \in M: f^{-k n}(x) \rightarrow p \text { as } n \rightarrow \infty\right\}
\end{gathered}
$$

are $C^{1}$-injectively immersed submanifolds of $M$. Every point $x \in W^{s}(p)$ $\bar{\hbar} W^{u}(p)$ is called a homoclinic point of $f$. The closure of the homoclinic points of $f$ associated to $p$ is called the homoclinic class of $f$ and it is denoted by $H_{f}(p)$.

Let $\Lambda \subset M$ be a $f$-invariant closed set. We say that $\Lambda$ admits a dominated splitting if the tangent bundle $T_{\Lambda} M$ has a continuous $D f$ invariant splitting $E \oplus F$ and there exist constants $C>0$ and $0<\lambda<1$ such that

$$
\left\|\left.D_{x} f^{n}\right|_{E(x)}\right\| \cdot\left\|\left.D_{x} f^{-n}\right|_{F\left(f^{n}(x)\right)}\right\| \leq C \lambda^{n}
$$

for all $x \in \Lambda$ and $n \geq 0$.
We say that $\Lambda$ is hyperbolic if the tangent bundle $T_{\Lambda} M$ has a $D f$ invariant splitting $E^{s} \oplus E^{u}$ and there exists constants $C>0$ and $0<$ $\lambda<1$ such that

$$
\left\|\left.D_{x} f^{n}\right|_{E_{x}^{s}}\right\| \leq C \lambda^{n} \text { and }\left\|\left.D_{x} f^{-n}\right|_{E_{x}^{u}}\right\| \leq C \lambda^{-n}
$$

for all $x \in \Lambda$ and $n \geq 0$.

We say that a subset $\mathcal{G} \subset \operatorname{Diff}(M)$ is residual if $\mathcal{G}$ contains the intersection of a countable family of open and dense subsets of $\operatorname{Diff}(M)$, and so $\mathcal{G}$ is dense in $\operatorname{Diff}(M)$. A property $\mathcal{P}$ is said to be generic $\left(C^{1}\right)$ if $\mathcal{P}$ holds for all diffeomorphisms which belong to some residual subset of $\operatorname{Diff}(M)$.

In this paper, we introduce the notion of $C^{1}$-robustly average shadowing property, and study the cases when the chain component $C_{f}(p)$ of $f$ associated to a hyperbolic periodic point $p$ has the $C^{1}$-robustly average shadowing property.

Now, we introduce the $C^{1}$-interior average shadowing property.
Definition 1.1. Let $C_{f}(p)$ be the chain component having hyperbolic a hyperbolic periodic point $p$. We say that $C_{f}(p)$ has the $C^{1}$ robustly average shadowing property if there exists a $C^{1}$-neighborhood $\mathcal{U}(f)$ of $f$ such that for any $g \in \mathcal{U}(f),\left.g\right|_{C_{g}\left(p_{g}\right)}$ has the average shadowing property, where $p_{g}$ is called the continuation of $p$.

Let $p$ be a hyperbolic periodic point of $f$. In [1], Bonatti and Crovisier proved that $C^{1}$ generically, a chain component $C_{f}(p)$ containing a periodic point $p$ is the homoclinic class $H_{f}(p)$. Thus we get the the following Theorem.

The following fact is the main Theorem in this paper.
Theorem A. For $C^{1}$-generic $f$, assume the chain component $C_{f}(p)$ is locally maximal and satisfies the following properties:
(a) for any $g \in \mathcal{U}_{0}(f)$, if $q \in C_{g}\left(p_{g}\right) \cap P(g)$ has minimum period $\pi(q) \geq m$, then

$$
\begin{aligned}
& \prod_{i=0}^{k-1}\left\|\left.D_{g^{i m}(q)} g^{m}\right|_{\left.E^{s}\right|_{g^{i m}(q)}}\right\|<K \lambda^{k} \text { and } \\
& \prod_{i=0}^{k-1}\left\|\left.D_{g^{-i m}(q)} g^{m}\right|_{\left.E^{u}\right|_{g^{-i m}(q)}}\right\|<K \lambda^{k}
\end{aligned}
$$

where $k=[\pi(q) / m]$, and $p_{g}$ is the continuation of $p$.
(b) $C_{f}(p)$ admits a dominated splitting $T_{C_{f}(p)} M=E \oplus F$ with $\operatorname{dim} E=$ index $(p)$, for any $x \in C_{f}(p)$,

$$
\left\|\left.D f\right|_{E(x)}\right\| / m\left(\left.D f\right|_{F(x)}\right)<\lambda^{2}
$$

(c) $f$ has the average shadowing property on $C_{f}(p)$.

Then $C_{f}(p)$ is hyperbolic for $f$.

## 2. Proof of the Theorem A

Let $M$ be as before, and let $f \in \operatorname{Diff}(M)$.
Proposition $2.1([5])$. Let $\lambda \in(0,1)$ be given. Let $\Lambda$ be a compact $f$-invariant set with a continuous $D f$-invariant spitting $T_{\Lambda} M=E \oplus F$ such that $\left\|\left.D f\right|_{E(x)}\right\| / m\left(\left.D f\right|_{F(x)}\right)<\lambda^{2}$, for any $x \in \Lambda$. Suppose there is a point $y \in \Lambda$ satisfying

$$
\log \lambda<\log \lambda_{1}=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \log \left(\left\|\left.D f\right|_{E\left(f^{i}(y)\right)}\right\|\right)<0
$$

and

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \log \left(\left\|\left.D f\right|_{E\left(f^{i}(y)\right)}\right\|\right)<\log \lambda_{1}
$$

Then for any $\lambda_{2}$ and $\lambda_{3}$ with $\lambda<\lambda_{2}<\lambda_{1}<\lambda_{3}<1$, and any neighborhood $U$ of $\Lambda$, there exists a hyperbolic periodic point $q$ of index $\operatorname{dim}(E)$ such that its orbit $\mathcal{O}(q)$ is entirely contained in $U$ and the derivatives along $\mathcal{O}(q)$ satisfy

$$
\begin{aligned}
& \prod_{i=0}^{k-1}\left\|\left.D f\right|_{E^{s}\left(f^{i}(q)\right)}\right\|<\lambda_{3}^{k}, \\
& \prod_{i=k-1}^{\pi(q)-1}\left\|\left.D f\right|_{E^{s}\left(f^{i}(q)\right)}\right\|>\lambda_{2}^{\pi(q)-k+1}
\end{aligned}
$$

for all $k=1,2, \cdots, \pi(q)$. Furthermore, $q$ can be chosen such that $\pi(q)$ is arbitrarily large.

Lemma $2.2([3])$. Let $\Lambda \subset M$ be a closed $f$-invariant set and $\varphi(x)$ be a continuous function defined on $\Lambda$. For $\epsilon>0$, there is $\delta>0$ such that for sequences $\left\{x_{i}\right\}_{i \in \mathbb{N}},\left\{y_{i}\right\}_{i \in \mathbb{N}}$ if

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n-1} d\left(x_{i}, y_{i}\right)<\delta
$$

then

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n-1}\left\|\varphi\left(x_{i}\right)-\varphi\left(y_{i}\right)\right\|<\epsilon .
$$

Lemma 2.3 ([3]). Let $C_{f}(p)$ satisfy (a)-(c) of Theorem A. Suppose that $E$ is not contracting. Then for any $\lambda<\gamma_{1}<\gamma_{2}<1$, there exists $x \in C_{f}(p)$ with $\mathcal{O}(x)$ such that

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \log \left(\left\|\left.D f\right|_{E\left(f^{i}(x)\right)}\right\|<\log \gamma_{1}\right. \\
& <\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \log \left(\left\|\left.D f\right|_{E\left(f^{i}(x)\right)}\right\|\right)<\log \gamma_{2}
\end{aligned}
$$

The following lemmas are well known results [5].
Lemma 2.4. Assume $\Lambda$ has a dominated splitting $E \oplus F$, and let $x \in U$ be a point such that $\mathcal{O}_{f}(x) \subset U$, where $U$ is an admissible neighborhood of $\Lambda$. There is $\epsilon_{1}>0$ such that the local center unstable manifold $W_{\epsilon_{1}}^{c u}(x)$ is defined and is transverse to $F$. Such manifolds are of class $C^{1}$. Moreover, there is a $N>0$ such that for any $0<\epsilon_{2}<\epsilon_{1}$, there exists $\delta>0$ such that $f^{N}\left(W_{\delta}^{c s}(x)\right) \subset W_{\epsilon_{2}}^{c s}\left(f^{N}(x)\right)$, and $f^{-N}\left(W_{\delta}^{c u}(x)\right) \subset$ $W_{\epsilon_{2}}^{c u}\left(f^{-N}(x)\right)$.

Lemma 2.5. Let $W_{\epsilon_{1}}^{c s}(x)$ and $W_{\epsilon_{1}}^{c u}(x)$ be as in Lemma2.4. For any $0<\lambda<1$, there is $\epsilon>0$ such that:
(a) If $\prod_{i=0}^{n-1}\left\|\left.D f\right|_{E\left(f^{i}(x)\right)}\right\| \leq \lambda^{n}$ for any $n \geq 1$, then for any $y \in W_{\epsilon}^{c s}(x)$, $d\left(f^{n}(x), f^{n}(y)\right) \rightarrow 0$ as $n \rightarrow \infty$.
(b) If $\prod_{i=0}^{n-1}\left\|\left.D f^{-1}\right|_{E\left(f^{-i}(x)\right)}\right\| \leq \lambda^{n}$ for any $n \geq 1$, then for any $y \in$ $W_{\epsilon}^{c u}(x), d\left(f^{n}(x), f^{n}(y)\right) \rightarrow 0$ as $n \rightarrow-\infty$.

Note that let $\Lambda$ be a closed $f$-invariant set. Then if $\Lambda$ is not hyperbolic then either $E$ is not contracting or $F$ is not expanding.

Lemma 2.6. Let $\Lambda$ be a closed $f$-invariant set and let $T_{\Lambda} M=E \oplus F$. Suppose that $E$ is not contracting. Then there is $y \in H_{f}(p)$ such that

$$
\prod_{i=0}^{n-1}\left\|\left.D f\right|_{E\left(f^{i} y\right)}\right\| \geq 1
$$

for all $n \geq 1$.
Proof. Assume there is no $y \in H_{f}(p)$ such that

$$
\prod_{i=0}^{n-1}\left\|\left.D f\right|_{E\left(f^{i} y\right)}\right\| \geq 1
$$

for all $n \geq 1$. Then for any $y \in H_{f}(p)$ there is $n(y) \in \mathbb{N}$ such that

$$
\prod_{i=0}^{n(y)-1}\left\|\left.D f\right|_{E\left(f^{i} y\right)}\right\|<1
$$

Denote

$$
\lambda(y)=\prod_{i=0}^{n(y)-1}\left\|\left.D f\right|_{E\left(f^{i} y\right)}\right\|
$$

We can get a neighborhood $U(y)$ of $y$ such that

$$
\prod_{i=0}^{n(y)-1}\left\|\left.D f\right|_{E\left(f^{i} x\right)}\right\|<\frac{1+\lambda(y)}{2}<1
$$

for any $x \in U(y)$. By the compactness of $H_{f}(p)$, we can find $y_{1}, y_{2}, \cdots, y_{k}$ contained in $H_{f}(p)$ such that

$$
H_{f}(p) \subset \bigcup_{i=1}^{k} U\left(y_{k}\right)
$$

Let $N=\max \left\{n\left(y_{1}\right), n\left(y_{2}\right), \cdots, n\left(y_{k}\right)\right\}, \lambda=\max \left\{\left(\frac{1+\lambda\left(y_{i}\right)}{2}\right)^{1 / N}: i=\right.$ $1,2, \cdots, k\}, C=\lambda^{-N} \max \left\{\left\|D f^{i}\right\|: i=0,1,2, \cdots, N-1\right\}$. Then one can check that

$$
\left\|\left.D f^{n}\right|_{E(x)}\right\|<C \lambda^{n}
$$

for any $x \in H_{f}(p)$ and any $n \geq 1$.

Proof of Proposition 2.3: Suppose that $C_{f}(p)$ is not hyperbolic. Then we may assume that $E$ is not contracting. Choose a neighborhood $\left\{W_{k}\right\}_{k \geq 1}$ of $C_{f}(p)$ such that for $k \geq 1, W_{k}$ is decreasing, $W_{k} \subset U$ and $\bigcap_{k>1} W_{k}=C_{f}(p)$. By [1], $C^{1}$ generically $C_{f}(p)=H_{f}(p)$. Let $\varphi(x)=$ $\left.\log \overline{\|} D f\right|_{E\left(f^{i}(x)\right)} \|$, for $x \in M$. Then by Lemma 2.2 and Lemma 2.3, for any $\lambda<\gamma_{1}<\gamma_{2}<1$, there is a point $x \in H_{f}(p)$ such that

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \varphi\left(f^{i}(x)\right)<\log \gamma_{1}<\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \varphi\left(f^{i}(x)\right)<\log \gamma_{2}
$$

and for any $k$, we can choose a hyperbolic periodic point $q_{k} \in W_{k}$. Then we use Proposition 2.1, for any $\lambda<\gamma_{1}<\gamma_{2}<1$, there is a periodic
point $q$ arbitrarily closed to $H_{f}(p)$ such that

$$
\begin{align*}
& \prod_{i=0}^{k-1}\left\|\left.D f\right|_{E^{s}\left(f^{i}(q)\right)}\right\|<\gamma_{2}^{k}  \tag{2.1}\\
& \prod_{i=k-1}^{\pi(q)-1}\left\|\left.D f\right|_{E^{s}\left(f^{i}(q)\right)}\right\|>\gamma_{1}^{\pi(q)-k+1} \tag{2.2}
\end{align*}
$$

Since a periodic point $q$ is arbitrarily close to $H_{f}(p)$, we may assume $q_{k}$ converge to a point $z \in H_{f}(p)$. Thus for every $q_{k}$, it satisfies the inequalities (2.1) and (2.2) By Lemma 2.4, there is $\epsilon>0$ such that $W_{\epsilon}^{c s}\left(q_{k}\right) \subset W^{s}\left(q_{k}\right)$ and $W_{\epsilon}^{c u}\left(q_{k}\right) \subset W^{u}\left(q_{k}\right)$. This means that there exists $N \geq 1$ such that for any $k, m \geq N, q_{k}$ and $q_{m}$ are homoclinic related, i.e., $W^{s}\left(q_{k}\right) \pitchfork W^{u}\left(q_{m}\right)$ and $W^{u}\left(q_{k}\right) \pitchfork W^{s}\left(q_{m}\right)$. Therefore, $z \in H_{f}\left(\mathcal{O}\left(q_{k}\right)\right)$ for all $k \geq N$. Thus $q_{k} \in H_{f}(p)=C_{f}(p)$ for all $k \geq N$. Thus, due to (2.2),

$$
\prod_{i=k-1}^{\pi(q)-1}\left\|\left.D f\right|_{E^{s}\left(f^{i}(q)\right)}\right\|>\gamma_{1}^{\pi(q)-k+1}
$$

of $q$ which contradicts the hypothesis (a). This ends the proof of proposition.

## References

[1] C. Bonatti and S. Crovisier, Recurrence and genericity, Invent. Math. 158 (2004), 33-104.
[2] M. Hurley, Bifurcation and chain recurrence, Ergodic Thoery \& Dynam. Syst. 3 (1983), 231-240.
[3] M. Lee, Stably average shadowabe homoclinic classes, Nonlinear Anal.: Theory, Methods \& Appl. 74 (2011), 689-694.
[4] R. Mãné, An ergodic closing lemma, Ann. Math. 116 (1982), 503-540.
[5] X. Wen, S. Gan and L. Wen, $C^{1}$-stably shadowble chain components are hyperbolic, J. Differen. Equat. 246 (2009) 340-357. 159-175.
*
Department of Mathematics
Chungnam University
Daejeon 305-764, Republic of Korea
E-mail: khlee@cnu.ac.kr
**
Department of Mathematics
Mokwon University
Daejeon 302-729, Republic of Korea
E-mail: lmsds@mokwon.ac.kr
***
Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: lvgang1234@hanmail.net


[^0]:    Received March 03, 2011; Accepted October 10, 2011.
    2010 Mathematics Subject Classification: Primary 37C50, 37D20; Secondary 37C25.

    Key words and phrases: average shadowing, hyperbolic, chain component, homoclinic class, generic, stably hyperbolic.

    Correspondence should be addressed to Manseob Lee, lmsds@mokwon.ac.kr.
    This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (No. 2011-0007649). And it was financially supported by academic research fund of Mokwon University in 2011.

