DOI QR코드

DOI QR Code

Identification of genes concordantly expressed with Atoh1 during inner ear development

  • Yoon, Hee-Jei (Department of Anatomy, Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University) ;
  • Lee, Dong-Jin (Department of Anatomy, Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University) ;
  • Kim, Myoung-Hee (Department of Anatomy, Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University) ;
  • Bok, Jin-Woong (Department of Anatomy, Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University)
  • Published : 2011.03.31

Abstract

The inner ear is composed of a cochlear duct and five vestibular organs in which mechanosensory hair cells play critical roles in receiving and relaying sound and balance signals to the brain. To identify novel genes associated with hair cell differentiation or function, we analyzed an archived gene expression dataset from embryonic mouse inner ear tissues. Since atonal homolog 1a (Atoh1) is a well known factor required for hair cell differentiation, we searched for genes expressed in a similar pattern with Atoh1 during inner ear development. The list from our analysis includes many genes previously reported to be involved in hair cell differentiation such as Myo6, Tecta, Myo7a, Cdh23, Atp6v1b1, and Gfi1. In addition, we identified many other genes that have not been associated with hair cell differentiation, including Tekt2, Spag6, Smpx, Lmod1, Myh7b, Kif9, Ttyh1, Scn11a and Cnga2. We examined expression patterns of some of the newly identified genes using real-time polymerase chain reaction and in situ hybridization. For example, Smpx and Tekt2, which are regulators for cytoskeletal dynamics, were shown specifically expressed in the hair cells, suggesting a possible role in hair cell differentiation or function. Here, by re-analyzing archived genetic profiling data, we identified a list of novel genes possibly involved in hair cell differentiation.

Keywords

References

  1. Dror AA, Avraham KB. Hearing loss: mechanisms revealed by genetics and cell biology. Annu Rev Genet 2009;43:411-37. https://doi.org/10.1146/annurev-genet-102108-134135
  2. Li H, Liu H, Heller S. Pluripotent stem cells from the adult mouse inner ear. Nat Med 2003;9:1293-9. https://doi.org/10.1038/nm925
  3. Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF, Brough DE, Raphael Y. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 2005;11:271-6. https://doi.org/10.1038/nm1193
  4. Oshima K, Shin K, Diensthuber M, Peng AW, Ricci AJ, Heller S. Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell 2010;141:704-16. https://doi.org/10.1016/j.cell.2010.03.035
  5. Kelley MW. Regulation of cell fate in the sensory epithelia of the inner ear. Nat Rev Neurosci 2006;7:837-49. https://doi.org/10.1038/nrn1987
  6. Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY. Math1: an essential gene for the generation of inner ear hair cells. Science 1999;284:1837-41. https://doi.org/10.1126/science.284.5421.1837
  7. Woods C, Montcouquiol M, Kelley MW. Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nat Neurosci 2004;7:1310-8. https://doi.org/10.1038/nn1349
  8. Gubbels SP, Woessner DW, Mitchell JC, Ricci AJ, Brigande JV. Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 2008;455:537-41. https://doi.org/10.1038/nature07265
  9. Sajan SA, Warchol ME, Lovett M. Toward a systems biology of mouse inner ear organogenesis: gene expression pathways, patterns and network analysis. Genetics 2007;177:631-53. https://doi.org/10.1534/genetics.107.078584
  10. Wallis D, Hamblen M, Zhou Y, Venken KJ, Schumacher A, Grimes HL, Zoghbi HY, Orkin SH, Bellen HJ. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development 2003;130:221-32. https://doi.org/10.1242/dev.00190
  11. Hertzano R, Montcouquiol M, Rashi-Elkeles S, Elkon R, Yucel R, Frankel WN, Rechavi G, Moroy T, Friedman TB, Kelley MW, Avraham KB. Transcription profiling of inner ears from Pou4f3(ddl/ddl) identifies Gfi1 as a target of the Pou4f3 deafness gene. Hum Mol Genet 2004;13:2143-53. https://doi.org/10.1093/hmg/ddh218
  12. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001;98:5116-21. https://doi.org/10.1073/pnas.091062498
  13. Morsli H, Choo D, Ryan A, Johnson R, Wu DK. Development of the mouse inner ear and origin of its sensory organs. J Neurosci 1998;18:3327-35.
  14. Chen P, Johnson JE, Zoghbi HY, Segil N. The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 2002;129:2495-505.
  15. Lumpkin EA, Collisson T, Parab P, Omer-Abdalla A, Haeberle H, Chen P, Doetzlhofer A, White P, Groves A, Segil N, Johnson JE. Math1-driven GFP expression in the developing nervous system of transgenic mice. Gene Expr Patterns 2003;3:389-95. https://doi.org/10.1016/S1567-133X(03)00089-9
  16. Mustapha M, Weil D, Chardenoux S, Elias S, El-Zir E, Beckmann JS, Loiselet J, Petit C. An alpha-tectorin gene defect causes a newly identified autosomal recessive form of sensorineural pre-lingual non-syndromic deafness, DFNB21. Hum Mol Genet 1999;8:409-12. https://doi.org/10.1093/hmg/8.3.409
  17. Scott HS, Kudoh J, Wattenhofer M, Shibuya K, Berry A, Chrast R, Guipponi M, Wang J, Kawasaki K, Asakawa S, Minoshima S, Younus F, Mehdi SQ, Radhakrishna U, Papasavvas MP, Gehrig C, Rossier C, Korostishevsky M, Gal A, Shimizu N, Bonne-Tamir B, Antonarakis SE. Insertion of beta-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness. Nat Genet 2001;27:59-63.
  18. Ahmed ZM, Morell RJ, Riazuddin S, Gropman A, Shaukat S, Ahmad MM, Mohiddin SA, Fananapazir L, Caruso RC, Husnain T, Khan SN, Riazuddin S, Griffith AJ, Friedman TB, Wilcox ER. Mutations of MYO6 are associated with recessive deafness, DFNB37. Am J Hum Genet 2003;72:1315-22. https://doi.org/10.1086/375122
  19. Everett LA, Morsli H, Wu DK, Green ED. Expression pattern of the mouse ortholog of the Pendred's syndrome gene (Pds) suggests a key role for pendrin in the inner ear. Proc Natl Acad Sci U S A 1999;96:9727-32. https://doi.org/10.1073/pnas.96.17.9727
  20. Stover EH, Borthwick KJ, Bavalia C, Eady N, Fritz DM, Rungroj N, Giersch AB, Morton CC, Axon PR, Akil I, Al-Sabban EA, Baguley DM, Bianca S, Bakkaloglu A, Bircan Z, Chauveau D, Clermont MJ, Guala A, Hulton SA, Kroes H, Li Volti G, Mir S, Mocan H, Nayir A, Ozen S, Rodriguez Soriano J, Sanjad SA, Tasic V, Taylor CM, Topaloglu R, Smith AN, Karet FE. Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet 2002;39:796-803. https://doi.org/10.1136/jmg.39.11.796
  21. Iguchi N, Tanaka H, Fujii T, Tamura K, Kaneko Y, Nojima H, Nishimune Y. Molecular cloning of haploid germ cell-specific tektin cDNA and analysis of the protein in mouse testis. FEBS Lett 1999;456:315-21. https://doi.org/10.1016/S0014-5793(99)00967-9
  22. Tanaka H, Iguchi N, Toyama Y, Kitamura K, Takahashi T, Kaseda K, Maekawa M, Nishimune Y. Mice deficient in the axonemal protein Tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function. Mol Cell Biol 2004;24:7958-64. https://doi.org/10.1128/MCB.24.18.7958-7964.2004
  23. Zhang Z, Jones BH, Tang W, Moss SB, Wei Z, Ho C, Pollack M, Horowitz E, Bennett J, Baker ME, Strauss JF 3rd. Dissecting the axoneme interactome: the mammalian orthologue of Chlamydomonas PF6 interacts with sperm-associated antigen 6, the mammalian orthologue of Chlamydomonas PF16. Mol Cell Proteomics 2005;4:914-23. https://doi.org/10.1074/mcp.M400177-MCP200
  24. Conley CA, Fritz-Six KL, Almenar-Queralt A, Fowler VM. Leiomodins: larger members of the tropomodulin (Tmod) gene family. Genomics 2001;73:127-39. https://doi.org/10.1006/geno.2000.6501
  25. Kemp TJ, Sadusky TJ, Simon M, Brown R, Eastwood M, Sassoon DA, Coulton GR. Identification of a novel stretch-responsive skeletal muscle gene (Smpx). Genomics 2001;72:260-71. https://doi.org/10.1006/geno.2000.6461
  26. Piddini E, Schmid JA, de Martin R, Dotti CG. The Ras-like GTPase Gem is involved in cell shape remodelling and interacts with the novel kinesin-like protein KIF9. EMBO J 2001;20:4076-87. https://doi.org/10.1093/emboj/20.15.4076
  27. Schindeler A, Lavulo L, Harvey RP. Muscle costameric protein, Chisel/Smpx, associates with focal adhesion complexes and modulates cell spreading in vitro via a Rac1/p38 pathway. Exp Cell Res 2005;307:367-80. https://doi.org/10.1016/j.yexcr.2005.04.006
  28. van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ Jr, Olson EN. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 2009;17:662-73. https://doi.org/10.1016/j.devcel.2009.10.013
  29. Trudeau MC, Zagotta WN. Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels. J Biol Chem 2003;278:18705-8. https://doi.org/10.1074/jbc.R300001200
  30. Priest BT, Murphy BA, Lindia JA, Diaz C, Abbadie C, Ritter AM, Liberator P, Iyer LM, Kash SF, Kohler MG, Kaczorowski GJ, MacIntyre DE, Martin WJ. Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proc Natl Acad Sci U S A 2005;102:9382-7. https://doi.org/10.1073/pnas.0501549102
  31. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006;126:1121-33. https://doi.org/10.1016/j.cell.2006.07.035
  32. Suzuki M. The Drosophila tweety family: molecular candidates for large-conductance Ca2+-activated Cl- channels. Exp Physiol 2006;91:141-7.
  33. Bordon A, Bosco N, Du Roure C, Bartholdy B, Kohler H, Matthias G, Rolink AG, Matthias P. Enforced expression of the transcriptional coactivator OBF1 impairs B cell differentiation at the earliest stage of development. PLoS One 2008;3:e4007. https://doi.org/10.1371/journal.pone.0004007
  34. Belyantseva IA, Boger ET, Friedman TB. Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci U S A 2003;100:13958-63. https://doi.org/10.1073/pnas.2334417100
  35. Bok J. Building the mammalian cochlea: an overview. Genes Genom 2010;32:1-7. https://doi.org/10.1007/s13258-010-0001-1
  36. Sobkowicz HM, Slapnick SM, August BK. The kinocilium of auditory hair cells and evidence for its morphogenetic role during the regeneration of stereocilia and cuticular plates. J Neurocytol 1995;24:633-53. https://doi.org/10.1007/BF01179815
  37. Shimasaki S, Yamamoto E, Murayama E, Kurio H, Kaneko T, Shibata Y, Inai T, Iida H. Subcellular localization of Tektin2 in rat sperm flagellum. Zoolog Sci 2010;27:755-61. https://doi.org/10.2108/zsj.27.755
  38. Holzmann D, Ott PM, Felix H. Diagnostic approach to primary ciliary dyskinesia: a review. Eur J Pediatr 2000;159:95-8. https://doi.org/10.1007/PL00013813

Cited by

  1. The SUMO Pathway Promotes Basic Helix-Loop-Helix Proneural Factor Activity via a Direct Effect on the Zn Finger Protein Senseless vol.32, pp.14, 2012, https://doi.org/10.1128/mcb.06595-11
  2. Exome sequencing and genome-wide copy number variant mapping reveal novel associations with sensorineural hereditary hearing loss vol.15, pp.1, 2011, https://doi.org/10.1186/1471-2164-15-1155
  3. SPAG6 silencing inhibits the growth of the malignant myeloid cell lines SKM-1 and K562 via activating p53 and caspase activation-dependent apoptosis vol.46, pp.2, 2011, https://doi.org/10.3892/ijo.2014.2768
  4. Nonviral Reprogramming of Human Wharton's Jelly Cells Reveals Differences BetweenATOH1Homologues vol.21, pp.11, 2011, https://doi.org/10.1089/ten.tea.2014.0340
  5. Spatiotemporal expression patterns of clusterin in the mouse inner ear vol.370, pp.1, 2011, https://doi.org/10.1007/s00441-017-2650-8
  6. Characterization of the Transcriptomes of Lgr5+ Hair Cell Progenitors and Lgr5- Supporting Cells in the Mouse Cochlea vol.10, pp.None, 2011, https://doi.org/10.3389/fnmol.2017.00122
  7. Rbm24a Is Necessary for Hair Cell Development Through Regulating mRNA Stability in Zebrafish vol.8, pp.None, 2011, https://doi.org/10.3389/fcell.2020.604026
  8. Analysis of FGF20‐regulated genes in organ of Corti progenitors by translating ribosome affinity purification vol.249, pp.10, 2011, https://doi.org/10.1002/dvdy.211
  9. Inner Ear and Muscle Developmental Defects in Smpx-Deficient Zebrafish Embryos vol.22, pp.12, 2011, https://doi.org/10.3390/ijms22126497
  10. Norrie disease protein is essential for cochlear hair cell maturation vol.118, pp.39, 2021, https://doi.org/10.1073/pnas.2106369118
  11. Sperm-associated antigen 6 (Spag6) mutation leads to vestibular dysfunction in mice vol.147, pp.4, 2011, https://doi.org/10.1016/j.jphs.2021.08.004
  12. SCN11A gene deletion causes sensorineural hearing loss by impairing the ribbon synapses and auditory nerves vol.22, pp.1, 2021, https://doi.org/10.1186/s12868-021-00613-8