6 MV 광자빔에 대한 MicroLion 액체이온함의 특성 연구

A Study of Characteristics of MicroLion Liquid Ionization Chamber for 6 MV Photon Beam

  • 최상현 (인하대학교 의과대학 방사선종양학교실) ;
  • 허현도 (인하대학교 의과대학 방사선종양학교실) ;
  • 김성훈 (한양대학교 의과대학 방사선종양학교실) ;
  • 지영훈 (한국원자력의학원 방사선치료연구센터) ;
  • 김금배 (한국원자력의학원 방사선치료연구센터) ;
  • 김우철 (인하대학교 의과대학 방사선종양학교실) ;
  • 김헌정 (인하대학교 의과대학 방사선종양학교실) ;
  • 신동오 (경희대학교 의과대학 방사선종양학교실) ;
  • 김찬형 (한양대학교 대학원 원자력공학과)
  • Choi, Sang-Hyoun (Department of Radiation Oncology, College of Medicine, Inha University) ;
  • Huh, Hyun-Do (Department of Radiation Oncology, College of Medicine, Inha University) ;
  • Kim, Seong-Hoon (Department of Radiation Oncology, College of Medicine, Hanyang University) ;
  • Ji, Young-Hoon (Research Center for Radiotherapy, Korea Institute of Radiological & Medical Sciences) ;
  • Kim, Kum-Bae (Research Center for Radiotherapy, Korea Institute of Radiological & Medical Sciences) ;
  • Kim, Woo-Chul (Department of Radiation Oncology, College of Medicine, Inha University) ;
  • Kim, Hun-Jeong (Department of Radiation Oncology, College of Medicine, Inha University) ;
  • Shin, Dong-Oh (Department of Radiation Oncology, College of Medicine, Kyung Hee University) ;
  • Kim, Chan-Hyeong (Department of Nuclear technology, Hanyang University)
  • 투고 : 2011.11.28
  • 심사 : 2011.12.12
  • 발행 : 2011.12.30

초록

최근 PTW사에서는 물등가물질로 구성되어 있고, 측정체적(sensitive volume, $0.002cm^3$)이 매우 작은 MicroLion 액체이온함을 내놓았다. 본 연구의 목적은 외부방사선 치료용 광자빔에 대해 MicroLion 액체이온함의 선량선형성, 선량률의존성, 공간분해능, 그리고 출력인수와 같은 선량측정학적 특성을 조사하는 것이다. 이 결과를 Semiflex 이온함($0.125cm^3$), Pinpoint 이온함($0.015cm^3$), 다이오드 검출기($0.0025mm^3$)의 결과와 비교분석하여 소조사면 측정에 적절한지를 평가하고 자 하였다. Varian clinac 2300 C/D의 6 MV 광자빔에서 측정하였으며, MP3 물팬톰(PTW, Freiburg)을 이용하였다. 공간분해능은 반음영(penumbra)을 측정하여 평가하였으며, $0.5{\times}0.5cm^2$에서 $10{\times}10cm^2$까지 다양한 조사면에 대하여 측정하였다. 출력인수는 $0.5{\times}0.5cm^2$에서 $40{\times}40cm^2$에 대하여 측정하였다. 선량에 따른 MicroLion 액체이온함의 측정값은 선형적인 비례성을 보였다. 그러나 선량률은 100 MU/min와 600 MU/min에 의한 측정값의 차이가 최대 5%의 차이를 보였으며, 선량율이 커질수록 출력선량이 작아지는 결과를 보였다. 공간분해능의 경우 조사면 $0.5{\times}0.5cm^2$에서 $10{\times}10cm^2$까지의 측방선량분포 비교에서 Semiflex 이온함을 제외한 다른 모든 검출기들의 경우 2% 이내에서 일치하였다. 출력선량은 $2{\times}2cm^2$에서 $10{\times}10cm^2$ 조사면에서 Semiflex 검출기 대비 모든 검출기가 2% 이내에서 잘 일치하였다. 연구 결과 MicroLion 액체이온함은 물등가물질로 이루어져 있으며, 감응 면적이 매우 작기 때문에 소조사면에서 매우 유용할 것으로 사료된다.

Recently PTW developed a MicroLion liquid ionization chamber which is water_equivalent and has a small sensitive volume of $0.002cm^3$. The aim of this work is to investigate such dosimetric characteristics as dose linearity, dose rate dependency, spatial resolution, and output factors of the chamber for the external radiotherapy photon beam. The results were compared to those of Semiflex chamber, Pinpoint chamber and Diode chamber with the sensitive volumes of $0.125cm^3$, $0.03cm^3$ and $0.0025cm^3$, respectively and evaluated to be suitable for small fields. This study was performed in the 6MV photon energy from a Varian 2300 C/D linac accelerator and the MP3 water phantom (PTW, Freiburg) was used. Penumbras in the varios field sizes ranged from $0.5{\times}0.5cm^2$ to $10{\times}10cm^2$ were used to evaluate the spatial resolution. Output factors were measured in the field sizes of $0.5{\times}0.5$ to $40{\times}40cm^2$. Readings of the chamber was linearly proportional to dose. Dose rate dependency was measured from 100 MU/min to 600 MU/min, showed a maximum difference of 5.0%, and outputs decreased with dose rates. The spatial resolutions determined with comparing profiles for the field sizes of $0.5{\times}0.5cm^2$ to $10{\times}10cm^2$ agreed between every detector except the Semiflex chamber to within 2%. Outputs of detectors were compared to that of Semiflex chamber and showed good agreements within 2% for every chamber. This study shows that MicroLion chamber characterized by a high signal-to-noise ratio and water equivalence could be suitable for the small field dosimetry.

키워드

참고문헌

  1. Burman C, Chui CS, Kutcher G, et al: Planning, delivery and quality assurance of intensity modulated radiotherapy using dynamic MU/minltileaf collimator: a strategy for large-scale implementation for the treatment of carcinoma of the prostate. Int J Radiat Oncol Biol Phys 39:863-873 (1997) https://doi.org/10.1016/S0360-3016(97)00458-6
  2. Araki F: Monte Carlo study of a Cyberknife stereotactic radiosurgery system. Med Phys 33:2955-2963 (2006) https://doi.org/10.1118/1.2219774
  3. Otto K: Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 35:310-317 (2008) https://doi.org/10.1118/1.2818738
  4. Chow JC, Seguin M, Alexander A: Dosimetric effect of collimating jaws for small MU/min1tileaf collimated fields. Med Phys 32:759-765 (2005) https://doi.org/10.1118/1.1861413
  5. Dutreix J, Dutreix A, Tubiana M: Electronic equilibrium and transition stages. Phys Med Biol 10:177-190 (1965) https://doi.org/10.1088/0031-9155/10/2/302
  6. Martens C, De Wagter C, De Neve W: The value of the PinPoint ion chamber for characterization of small field segments used in $int{\pi}tensity$-modulated radiotherapy. Phys Med Biol 45:2519-2530 (2000) https://doi.org/10.1088/0031-9155/45/9/306
  7. Laub WU, Wong T: The volume effect of detectors in the dosimetry of small fields used in IMRT. Med Phys 30:341-347 (2003) https://doi.org/10.1118/1.1544678
  8. Lee HR, Pankuch M, Chu JC, et al: Evaluation and characterization of parallel plate microchamber's functionalities in small beam dosimetry. Med Phys 29:2489-2496 (2002) https://doi.org/10.1118/1.1514576
  9. Francescon P, Cora S, Cavedon C: Total scatter factors of small beams: a MU/minltidetector and Monte Carlo study. Med Phys 35:504-513 (2008) https://doi.org/10.1118/1.2828195
  10. Bucciolini M, Buonamici FB, Mazzocchi S, et al: Diamond detector versus silicon Diode and ion chamber in photon beams of different energy and field size. Med Phys 30:2149-2154 (2003) https://doi.org/10.1118/1.1591431
  11. Esthappan J, MU/mintic S, Harms WB, et al: Dosimetry of therapeutic photon beams using an extended dose range film. Med Phys 29:2438-2445 (2002) https://doi.org/10.1118/1.1508379
  12. Olch AJ: Dosimetric accuracy of the ITP inverse treatment planning system. Med Phys 29:2484-2488 (2002) https://doi.org/10.1118/1.1513162
  13. Dasu A, Lofroth PO, Wickman G: Liquid ionization chamber measurements of dose distributions in sma11 6 MV photon beams. Phys Med Biol 43:21-36 (1998) https://doi.org/10.1088/0031-9155/43/1/002
  14. McKerracher C, Thwaites DI: Assessment of new small-field detectors against standard-field detectors for practical stereotactic beam data acquisition. Phys Med Biol 44:2143-2160 (1999) https://doi.org/10.1088/0031-9155/44/9/303
  15. Ding GX, Duggan DM, Coffey CW: Commissioning stereotactic radiosurgery beams using both experimental and theoretical methods. Phys Med Biol 51:2549-2566 (2006) https://doi.org/10.1088/0031-9155/51/10/013
  16. McNiven A, Kron T: Interpolation and extrapolation of dose measurements with different detector sizes to improve the spatial resolution of radiotherapy dosimetry as demonstrated for helical tomotherapy. Phys Med Biol 49:3665-3674 (2004) https://doi.org/10.1088/0031-9155/49/16/013
  17. Wilcox EE, Daskalov GM: Evaluation of GAFCHROMIC EBT film for Cyberknife dosimetry. Med Phys 34:1967-1974 (2007) https://doi.org/10.1118/1.2734384
  18. Westerrnark M, Arndt J, Nilsson B, et al: Comparative dosimetry in narrow high-energy photon beams. Phys Med Bio 45:685-702 (2000) https://doi.org/10.1088/0031-9155/45/3/308
  19. Zhu XR, Allen JJ, Shi J, et al: Total scatter factors and tissue maxiMU/minm ratios for small radiosurgery fields: comparison of Diode detectors, a parallel plate ion chamber, and radiographic film. Med Phys 27:472-477 (2000) https://doi.org/10.1118/1.598915
  20. Araki F, Ikegami T, Ishidoya T, et al: Measurements of Gamma-Knife helmet output factors using a radiophotoluminescent glass rod dosimeter and a Diode detector. Med Phys 30:1976-1981 (2003) https://doi.org/10.1118/1.1587451
  21. Sauer OA, Wilbert J: Measurement of output factors for small photon beams. Med Phys 4:1983-1988 (2007)