A Pilot Research for Real-Time Specific Patient Quality Assurance Using the Hybrid Optimized Vmat Phantom (Hovp) in Volume Modulated Arc Therapy

체적변조회전치료에서 Hybrid Optimized VMAT Phantom (HOVP)을 이용한 실시간 환자 맞춤형 정도관리를 위한 예비연구

  • Huh, Hyun-Do (Department of Radiation Oncology, College of Medicine, Inha University) ;
  • Choi, Sang-Hyoun (Department of Radiation Oncology, College of Medicine, Inha University) ;
  • Kim, Woo-Chul (Department of Radiation Oncology, College of Medicine, Inha University) ;
  • Kim, Hun-Jeong (Department of Radiation Oncology, College of Medicine, Inha University) ;
  • Kim, Kum-Bae (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Seong-Hoon (Department of Radiation Oncology, College of Medicine, Hanyang University) ;
  • Cho, Sam-Ju (Department of Radiation Oncology, College of Medicine, Eulji University) ;
  • Min, Chul-Kee (Department of Radiation Oncology, College of Medicine, Soonchunhyang University) ;
  • Cho, Kwang-Hwan (Department of Radiation Oncology, College of Medicine, Soonchunhyang University) ;
  • Lee, Sang-Hoon (Department of Radiation Oncology, Cheil General Hospital, Kwandong University College of Medicine) ;
  • Lee, Suk (Department of Radiation Oncology, College of Medicine, Korea University) ;
  • Shim, Jang-Bo (Department of Radiation Oncology, College of Medicine, Korea University) ;
  • Shin, Dong-Oh (Department of Radiation Oncology, School of Medicine, Kyung Hee University) ;
  • Ji, Young-Hoon (Research Center for Radiotherapy, Korea Institute of Radiological & Medical Sciences)
  • 허현도 (인하대학교 의과대학 방사선종양학교실) ;
  • 최상현 (인하대학교 의과대학 방사선종양학교실) ;
  • 김우철 (인하대학교 의과대학 방사선종양학교실) ;
  • 김헌정 (인하대학교 의과대학 방사선종양학교실) ;
  • 김금배 (한양대학교 대학원 원자력공학과) ;
  • 김성훈 (한양대학교 의과대학 방사선종양학교실) ;
  • 조삼주 (을지대학교 의과대학 방사선종양학교실) ;
  • 민철기 (순천향대학교 의과대학 방사선종양학교실) ;
  • 조광환 (순천향대학교 의과대학 방사선종양학교실) ;
  • 이상훈 (관동대학교 의과대학 제일병원 방사선종양학교실) ;
  • 이석 (고려대학교 의과대학 방사선종양학교실) ;
  • 심장보 (고려대학교 의과대학 방사선종양학교실) ;
  • 신동오 (경희대학교 의과대학 방사선종양학교실) ;
  • 지영훈 (한국원자력의학원 방사선치료연구센터)
  • Received : 2011.11.24
  • Accepted : 2011.12.12
  • Published : 2011.12.30

Abstract

The purpose of this was to investigate the measurement of fluence dose map for the specific patient quality assurance. The measurement of fluence map was performed using 2D matrixx detector. The absorbed dose was measured by a glass detector, Gafchromic film and ion chamber in Hybrid Optimized VMAT Phantom (HOVP). For 2D Matrixx, the results of comparison were average passing rate $85.22%{\pm}1.7$ (RT_Target), $89.96%{\pm}2.15$ (LT_Target) and $95.14%{\pm}1.18$ (G4). The dose difference was $11.72%{\pm}0.531$, $-11.47%{\pm}0.991$, $7.81%{\pm}0.857$, $-4.14%{\pm}0.761$ at the G1, G2, G3, G4. In HOVP, the results of comparison for film were average passing rate (3%, 3 mm) $93.64%{\pm}3.87$, $90.82%{\pm}0.99$. We were measured an absolute dose in steep gradient area G1, G2, G3, G4 using the glass detector. The difference between the measurement and calculation are 8.3% (G1), -5.4% (G2), 6.1% (G3), 7.2% (G4). The using an Ion-chamber were an average relative dose error $-1.02%{\pm}0.222$ (Rt_target), $0.96%{\pm}0.294$ (Lt_target). Though we need a more study using a transmission detector. However, a measurement of real-time fluence map will be predicting a dose for real-time specific patient quality assurance in volume modulated arc therapy.

다엽콜리메이터, 겐트리회전, 선량율 등에서 형성되는 플루언스 맵을 이용하여 환자 맞춤형 치료 선량검증이 가능한지 알아보았다. 플루언스 맵은 2D 배열 검출기로 측정하였고, 동일 치료계획을 팬톰 내에서 이온전리함, 필름, 유리선량계 등을 이용하여 측정 비교하였다. 목표점에서 체적감마인자(volume gamma index, 3%, 3 mm)기준에 통과율은 $85.22%{\pm}1.7$(RT_target), $89.96%{\pm}2.15$였고, G4는 $95.14%{\pm}1.18$이었다. 선량 전달 오차는 선량이 급격히 변화는 영역(G1, G2, G3)과 주요장기(G4)에서 각각 $11.72%{\pm}0.531$, $-11.47%{\pm}0.991$, $7.81%{\pm}0.857$, $-4.14%{\pm}0.761$이었다. 이온전리함 측정값의 상대오차는 각각 평균 $-1.02%{\pm}0.222$ (Rt_target), $0.96%{\pm}0.294$ (Lt_target)이었다. 필름의 감마인자(3%, 3 mm) 기준 평균 통과율은 $92.59%{\pm}3.312$이었다. 유리선량계 상대 오차는 8.3% (G1), -5.4% (G2), 7.2% (G3), 6.1% (G4)이었다. 체적변조회전방사선 치료(VMAT)시 실시간 플루언스 맵 측정을 통한 실시간 환자 맞춤형 선량 검증이 가능할 것으로 사료되었다.

Keywords

References

  1. Masi L, Casamassima F, Doro R, Francescon P: Quality assurance of volumetric modulated arc therapy: Evaluation and comparison of different dosimetric systems. Med Phys 38(2):612-621 (2011)
  2. Cozzi L, Dinshaw KA, Shrivastava SK: A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiother Oncol 89:180-191 (2008) https://doi.org/10.1016/j.radonc.2008.06.013
  3. Fogliata A, Clivio A, Nicolini G, Vanetti E, Cozzi L: Intensity modulation with photons for benign intracranial tumours: A planning comparison of volumetric single arc, helical arc and fixed gantry techniques. Radiother Oncol 89:254-256 (2008) https://doi.org/10.1016/j.radonc.2008.07.021
  4. Charles SJ, Dieterich S, Orton CG: It is STILL necessary to validate each individual IMRT treatment plan with dosimetric measurements before delivery. Med Phys 38:553-555 (2011) https://doi.org/10.1118/1.3512801
  5. Low DA, Moran JM, Dempsey JF, Dong L, Oldham M, Oldham M: Dosimetry tools and techniques for IMRT. Med Phys 38:1313-1338 (2011) https://doi.org/10.1118/1.3514120
  6. Dobler B, Streck N, Klein E, Loeschel R, Haertl P, Koelbl O: Hybrid plan verification for intensity-modulated radiation therapy (IMRT) using the 2D ionization chamber array I'RT MatriXX— feasibility study. Phys Med Biol 55:39-55 (2010) https://doi.org/10.1088/0031-9155/55/2/N02
  7. Mans A, Remeijer P, Olaciregui RI, et al: 3D Dosimetric verification of volumetric-modulated arc therapy by portal dosimetry. Radiother Oncol 94:181-187 (2010) https://doi.org/10.1016/j.radonc.2009.12.020
  8. Ceberg S, Gagne I, Gustafsson H, et al: RapidArc treatment verification in 3D using polymer gel dosimetry and Monte Carlo simulation. Phys Med Biol 55:4885-4898 (2010) https://doi.org/10.1088/0031-9155/55/17/001
  9. Hartmann B, Martišková M, Jäkel O: Homogeneity of $Gafchromic^{\circledR}$ EBT2 film. Med Phys 37:1753-1758 (2010) https://doi.org/10.1118/1.3368601
  10. Martisíkova M, Ackermann B, Jakel1 O: Analysis of uncertainties in GafchromicR EBT film dosimetry of photon beams. Phys Med Biol 53:7013-7041 (2008). https://doi.org/10.1088/0031-9155/53/24/001
  11. Ezzell G, Burmeister JW, Dogan N, LoSasso H, Mechalakos JG. IMRTcommissioning: Multiple institution planning and dosimetry comparisons. a report from AAPMTask Group119 Med Phys 36:5359-5373 (2009) https://doi.org/10.1118/1.3238104
  12. Barker JL, Garden AS, Kian K, et. al: Quantification of Volimetric and Geometric Changes occurring During Fractionated Radiotherapy For Head and Neck Cancer Using an Integrated CT/Linear accelerator system. Int J Radiation Oncology Biol Phys 59:960-970 (2004) https://doi.org/10.1016/j.ijrobp.2003.12.024
  13. Leea C, Langena KM, Lub W, et al: Evaluation of geometric changes of parotid glands during head and neck cancer radiotherapy using daily MVCT and automatic deformable registration. Int J Radiotherapy and Oncology 89:81-88 (2008) https://doi.org/10.1016/j.radonc.2008.07.006
  14. David L, Schwartz ong L: Adaptive Radiation Therapy for Head and Neck Cancer—Can an Old Goal Evolve into a New Standard?. Journal of Oncology Article ID 690595:1-13 (2011)
  15. Poppe B, Looe HK, Chofor N, Ruhmann A, Harder D, Willborn KC: Clinical performance of a transmission detector array for the permanent supervision of IMRT deliveries. Radiother Oncol 95:158-165 (2010) https://doi.org/10.1016/j.radonc.2009.12.041
  16. Schreibmann E, Dhabaan A, Elder E, Fox T: Patient-specific quality assurance method for VMAT treatment delivery. Med Phys 36:4530-4535 (2009) https://doi.org/10.1118/1.3213085