복부부위의 체부정위방사선치료시 호흡에 의한 움직임분석 프로그램 개발 및 유용성 평가

Development of Movement Analysis Program and its Feasibility Test in Streotactic Body Radiation Threrapy

  • 신은혁 (삼성서울병원 방사선종양학과) ;
  • 한영이 (삼성서울병원 방사선종양학과) ;
  • 김진성 (삼성서울병원 방사선종양학과) ;
  • 박희철 (삼성서울병원 방사선종양학과) ;
  • 신정석 (삼성서울병원 방사선종양학과) ;
  • 주상규 (삼성서울병원 방사선종양학과) ;
  • 이지혜 (삼성서울병원 방사선종양학과) ;
  • 안종호 (삼성서울병원 방사선종양학과) ;
  • 이재기 (한양대학교 원자력 공학과) ;
  • 최두호 (삼성서울병원 방사선종양학과)
  • Shin, Eun-Hyuk (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Han, Young-Yih (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kim, Jin-Sung (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Park, Hee-Chul (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Shin, Jung-Suk (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Ju, Sang-Gyu (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lee, Ji-Hea (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Ahn, Jong-Ho (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lee, Jai-Ki (Department of Nuclear Engineering, Hanyang University) ;
  • Choi, Doo-Ho (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • 투고 : 2011.03.04
  • 심사 : 2011.06.29
  • 발행 : 2011.09.30

초록

호흡동조 방사선치료 및 체부정위방사선치료시 치료계획과 치료시 치료대상장기가 동일하게 움직이는 것을 확인하는 것은 매우 중요하다. 따라서, 본 연구에서는 호흡의 상태를 모니터하는 RPM 자료와, OBI 영상을 이용하여, 치료 중 치료장기의 움직임을 유추하고 분석하는 프로그램을 개발하였다. 기개발된 호흡연습/유도장치를 사용하여 환자호흡의 규칙성을 확보하였다. 호흡의 상태는 RPM 자료를 실시간 모니터하고 또 치료 후에 저장된 RPM 자료를 이용하였고, 호흡 변위를 내부장기의 움직임으로 환산하기 위하여 호흡의 0%, 50% 호흡동조 OBI 영상을 촬영하였다. OBI 영상촬영 시각을 기록하여, 해당시각의 RPM 자료를 읽고, RPM의 변위와 OBI에서 관찰한 종양의 움직임의 상호비례계수를 구하였다. 치료 후 RPM 자료를 읽어 RPM 자료의 최대값, 최소값, 평균값과 표준편차를 자동으로 계산하는 프로그램을 Labview로 제작하였고, 계산된 결과는 excel 파일로 출력되도록 고안하였다. 분석된 RPM 자료에 비례계수를 적용하여 치료시행중 대상장기의 움직임을 유추하도록 하였다. 이와 같이 개발한 방법은 구동팬텀을 이용하여 정확성을 시험하였고, 간의 체부정위방사선치료를 받는 10명의 환자에 대하여 개발한 방법을 적용하여 유용성을 평가하였다. 본 연구에서 개발한 호흡분석 방법은 구동팬텀을 이용하여 정확성을 확인하였다. 4 sec 주기의 2 cm의 sine 함수형태의 규칙적인 움직임에서 주기는 0.052 sec (1.3%) 크게, 움직임의 크기는 1.952 cm로 0.048 cm 작게 측정되었다. 환자에게 시험적용에서는 1명의 환자는 치료 전 연습을 위한 가치료시간의 자료분석에서 체부정위방사선치료에 적합하지 않은 것으로 판명되었고, 1명의 환자는 치료계획시보다 장기의 움직임이 크게 분석되어 호흡동조 방사선치료로 전환하였다. 본 연구에서 개발한 호흡분석프로그램은 복부부위의 방사선을 받는 모든 환자들의 내부장기의 움직임을 유추하는 데 유용한 것으로 평가되며, 체부정위방사선치료 대상환자들에 대하여, 치료계획시와 동일하게 움직임이 유지되는지 모니터하는 데 유용하였다.

Respiratory gated radiation therapy and stereotactic body radiation therapy require identical tumor motions during each treatment with the motion detected in treatment planning CT. Therefore, this study developed a tumor motion monitoring and analysis system during the treatments employing RPM data, gated setup OBI images and a data analysis software. A respiratory training and guiding program which improves the regularity of breathing was used to patients. The breathing signal was obtained by RPM and the recorded data in the 4D console was read after treatment. The setup OBI images obtained gated at 0% and 50% of breathing phases were used to detect the tumor motion range in crenio-caudal direction. By matching the RPM data recorded at the OBI imaging time, a factor which converts the RPM motion to the tumor motion was computed. RPM data was entered to the institute developed data analysis software and the maximum, minimum, average of the breathing motion as well as the standard deviation of motion amplitude and period was computed. The computed result is exported in an excel file. The conversion factor was applied to the analyzed data to estimate the tumor motion. The accuracy of the developed method was tested by using a moving phantom, and the efficacy was evaluated for 10 stereotactic body radiation therapy patients. For the sine wave motion of the phantom with 4 sec of period and 2 cm of peak-to-peak amplitude, the measurement was slightly larger (4.052 sec) and the amplitude was smaller (1.952 cm). For patient treatment, one patient was evaluated not to qualified to SBRT due to the usability of the breathing, and in one patient case, the treatment was changed to respiratory gated treatment due the larger motion range of the tumor than treatment planed motion. The developed method and data analysis program was useful to estimate the tumor motion during treatment.

키워드

참고문헌

  1. Park HC, Cho BC, Kim SS, Oh DH, Bae H: Clinical considerations for respiration synchronized high-precision radiotherapy. Korean J Med Physics Supple 1:16-21 (2005)
  2. Timmerman RD: An Overview of Hypofractionation and introduction to this issue of Seminars in radiation oncology. Seminars in Radiation Oncology 18:215-222 (2008) https://doi.org/10.1016/j.semradonc.2008.04.001
  3. Keall PJ, Mageras GS, Balter JM, et al: The management of respiratory motion in radiation oncology report of AAPM TG 76. Med Phys 33:3874-3900 (2006) https://doi.org/10.1118/1.2349696
  4. Benedict SH, Yenice KM, Folliwill David, et al: Stereotactic Body radiation therapy: The report of AAPM TG101. Med.Phys 37:4078-4101 (2010) https://doi.org/10.1118/1.3438081
  5. Pan T, Lee TY, Rietzel E, Chen GTY: 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med Phys 31:333-340 (2004) https://doi.org/10.1118/1.1639993
  6. Videtic GM, Parker W, Singh AK, et al: A randomized phase II study comparing 2 stereotactoc body radiation therapy (SBRT) schedules for medically inoperable patients with stage I peripheral Non-Small cell lung cancer, RTOG 0915
  7. Gierga DP, Brewer J Shap GC: The correlation between internal markers for abdominal tumors: implications for respiratory gating. Int J Radiat Oncol Biol Physics 61:1551-1558 (2005) https://doi.org/10.1016/j.ijrobp.2004.12.013
  8. Alejandra MR, Roel TJ, Wouter W, et al: Streotactic Body Radiation Therapy for liver tumors: Impact of daily setup corrections and day-to-day anatomical variation on dose in target and organ and risk. Int J Radiat Oncol Biol Physics 72:1-8 (2009)
  9. Gierga DP, Brewer J, Shap GC: The correlation between internal markers for abdominal tumors: implications for respiratory gating. Int J Radiat Oncol Biol Physics 61:1551-1558 (2005) https://doi.org/10.1016/j.ijrobp.2004.12.013
  10. Ali I, Lovelock D, Kang H, et al: Extraction of internal and external marker 3D-motion in liver patients with compression belt using kV cone-beam radiographic projections. Med Phys 34:2392 (2007)
  11. Li XA, Keall PJ, Orton CG: Point/counterpoint. Respiratorygating for radiation therapy is not ready for prime time. Med Phys 34:867-870 (2007) https://doi.org/10.1118/1.2514027
  12. Venkat RB, Keall P, Sawant A, George R: Respiratory training using audio visual bio-feedback. Med Phys 34:2370 (2007)
  13. Song JY, Nah BS, Jung WK, Ahn SJ, Nam TK, Yun MS: Development of error analysis program for phase-based respiratory gating radiation therapy. Korean J Med Physics 17:136-143 (2006)
  14. Shin EH, Park HC, Han YI, et al: efficacy of a respiration training system on the regularity of breathing. Korean J of Med Phys 26:181-188 (2008)
  15. Kim JS, Shin EH, Shin JS, et al: The clinical implementation of 2D dose distribution QA system for patient specific respiration fated radiotherapy. Korean J of Med Phys 21: 127-136 (2010)
  16. Smith W, Becker N: Time delays and margins in gated radiotherapy, J Appl Clin Med Phys 10:140-154 (2009) https://doi.org/10.1120/jacmp.v10i3.2896
  17. Gierga DP, Brewer J Shap GC: The correlation between internal markers for abdominal tumors: implications for respiratory gating. Int J Radiat Oncol Biol Physics 61:1551-1558 (2005) https://doi.org/10.1016/j.ijrobp.2004.12.013
  18. Lim S, Park S, Ahn SD, et al: Guiding curve based on the normal breathing as monitored by thermocouple for regular breathing. Med Phys 34:4514-4518 (2007) https://doi.org/10.1118/1.2795829
  19. Kang Y, Zhang X, Chang JY, et al: 4D Proton treatmentplanning strategy for mobile lung tumors. Int J Radiat Oncol BiolPhys 67:906-914 (2007) https://doi.org/10.1016/j.ijrobp.2006.10.045
  20. Lu HM, Brett R, Sharp G, et al: A respiratory-gated treatmentsystem for proton therapy. Med Phys 34:3273-3278 (2007) https://doi.org/10.1118/1.2756602
  21. Paganetti H, Jiang H, Trofimov A: 4D Monte Carlo simulationof proton beam scanning: modelling of variations in timeand space to study the interplay between scanning pattern andtime- dependent patient geometry. Phys Med Biol 50:983-990 (2005) https://doi.org/10.1088/0031-9155/50/5/020
  22. Mendez Romero A, Zinkstok RT, Wunderink W, et al: Stereotactic body radiation therapy for liver tumors: impact of daily setup corrections and day-to-day anatomic variations on dose in target and organs at risk. Int J Radiat Oncol Biol Phys 75:1201-1208 (2009) https://doi.org/10.1016/j.ijrobp.2008.12.020
  23. Holmes TW, Hudes R, Dziuba S, et al: Stereotactic image- guided intensity modulated radiotherapy using the HI- ART II helical tomotherapy system. Med Dosim 33:135-148 (2008) https://doi.org/10.1016/j.meddos.2008.02.006