DOI QR코드

DOI QR Code

Effects of Curing Temperature on the Optical and Charge Trap Properties of InP Quantum Dot Thin Films

  • Mohapatra, Priyaranjan (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Dung, Mai Xuan (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Choi, Jin-Kyu (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Jeong, So-Hee (Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials) ;
  • Jeong, Hyun-Dam (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Received : 2010.09.29
  • Accepted : 2010.11.16
  • Published : 2011.01.20

Abstract

Highly luminescent and monodisperse InP quantum dots (QDs) were prepared by a non-organometallic approach in a non-coordinating solvent. Fatty acids with well-defined chain lengths as the ligand, a non coordinating solvent, and a thorough degassing process are all important factors for the formation of high quality InP QDs. By varying the molar concentration of indium to ligand, QDs of different size were prepared and their absorption and emission behaviors studied. By spin-coating a colloidal solution of InP QD onto a silicon wafer, InP QD thin films were obtained. The thickness of the thin films cured at 60 and $200^{\circ}C$ were nearly identical (approximately 860 nm), whereas at $300^{\circ}C$, the thickness of the thin film was found to be 760 nm. Different contrast regions (A, B, C) were observed in the TEM images, which were found to be unreacted precursors, InP QDs, and indium-rich phases, respectively, through EDX analysis. The optical properties of the thin films were measured at three different curing temperatures (60, 200, $300^{\circ}C$), which showed a blue shift with an increase in temperature. It was proposed that this blue shift may be due to a decrease in the core diameter of the InP QD by oxidation, as confirmed by the XPS studies. Oxidation also passivates the QD surface by reducing the amount of P dangling bonds, thereby increasing luminescence intensity. The dielectric properties of the thin films were also investigated by capacitance-voltage (C-V) measurements in a metal-insulator-semiconductor (MIS) device. At 60 and $300^{\circ}C$, negative flat band shifts (${\Delta}V_{fb}$) were observed, which were explained by the presence of P dangling bonds on the InP QD surface. At $300^{\circ}C$, clockwise hysteresis was observed due to trapping and detrapping of positive charges on the thin film, which was explained by proposing the existence of deep energy levels due to the indium-rich phases.

Keywords

References

  1. Klein, D. L.; Roth, R.; Lim, A. K. L.; Alivisatos, A. P.; McEuen, P. L. Nature 1997, 389, 699. https://doi.org/10.1038/39535
  2. Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi, M. G. Science 2000, 290, 314. https://doi.org/10.1126/science.290.5490.314
  3. Zhao, J.; Zhang, J.; Jiang, C.; Bohnenberger, J.; Basche, T.; Mews, A. J. Appl. Phys. 2004, 96, 3206. https://doi.org/10.1063/1.1784611
  4. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538. https://doi.org/10.1126/science.1104274
  5. Medinitz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Nat. Mater. 2005, 4, 435. https://doi.org/10.1038/nmat1390
  6. Alivisatos, A. P.; Gu, W.; Larabell, C. Annu. Rev. Biomed. Eng. 2005, 7, 55. https://doi.org/10.1146/annurev.bioeng.7.060804.100432
  7. Dahan, M.; Levi, S.; Luccardini, C.; Rostaing, P.; Riveau, B.; Triller, A. Science 2003, 302, 442. https://doi.org/10.1126/science.1088525
  8. Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nat. Biotechnol. 2003, 21, 47. https://doi.org/10.1038/nbt767
  9. Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M.; Cohn, L. H.; Bawendi, M. G.; Frangioni, J. V. Nat. Biotechnol. 2004, 22, 93. https://doi.org/10.1038/nbt920
  10. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425. https://doi.org/10.1126/science.1069156
  11. McDonald, S. A.; Konstantatos, G.; Zhang, S.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Nat. Mater. 2005, 4, 138. https://doi.org/10.1038/nmat1299
  12. Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. 1996, 100, 468. https://doi.org/10.1021/jp9530562
  13. Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. J. Am. Chem. Soc. 1997, 119, 7019. https://doi.org/10.1021/ja970754m
  14. Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Nano Lett. 2001, 1, 207. https://doi.org/10.1021/nl0155126
  15. Lim, J.; Jun, S.; Jang, E.; Baik, H.; Kim, H.; Cho, J. Adv. Mater. 2007, 19, 1927. https://doi.org/10.1002/adma.200602642
  16. Talapin, D. V.; Rogach, A. L.; Mekis, I.; Haubold, S.; Kornowski, A.; Haase, M.; Weller, H. Colloids Surf., A. 2002, 202, 145. https://doi.org/10.1016/S0927-7757(01)01078-0
  17. Micic, O. I.; Ahrenkiel, S. P.; Nozik, A. J. Appl. Phys. Lett. 2001, 78, 4022. https://doi.org/10.1063/1.1379990
  18. Li, Y. D.; Duan, X. F.; Qian, Y. T.; Yang, L.; Ji, M. R.; Li, C. W. J. Am. Chem. Soc. 1997, 117, 7869.
  19. Guzelian, A. A.; Katari, J. E. B.; Kadavanich, A. V.; Banin, U.; Hamad, K.; Juban, E.; Alivisatos, A. P.; Wolters, R. H.; Arnold, C. C.; Heath, J. R. J. Phys. Chem.1996, 100, 7212. https://doi.org/10.1021/jp953719f
  20. Micic, O. I.; Sprague, J. R.; Curtis, C. J.; Jones, K. M.; Machol, J. L.; Nozik, A. J.; Giessen, H.; Fluegel, B.; Mohs, G.; Peyghambarian, N. J. Phys. Chem. 1995, 99, 7754. https://doi.org/10.1021/j100019a063
  21. Micic, O. I.; Curtis, C. J.; Jones, K. M.; Sprague, J. R.; Nozik, A. J. J. Phys. Chem. 1994, 98, 4966. https://doi.org/10.1021/j100070a004
  22. Battagila, D.; Peng, X. Nano Lett. 2002, 2, 1027. https://doi.org/10.1021/nl025687v
  23. Xie, R.; Battagila, D.; Peng, X. J. Am. Chem. Soc. 2007, 129, 15432. https://doi.org/10.1021/ja076363h
  24. Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O'Brien, S.; Murray, C. B. Nature 2006, 439, 55. https://doi.org/10.1038/nature04414
  25. Liu, G. F.; Sroubek, Z.; Yarmoff, J. A. Phys. Rev. Lett. 2004, 92, 216801. https://doi.org/10.1103/PhysRevLett.92.216801
  26. Seon, J.; Lee. S. Kim J. M.; Jeong, H. D. Chem. Mater. 2009, 21, 604. https://doi.org/10.1021/cm801557q
  27. Choi, J. K.; Jang, S.; Sohn, H.; Jeong, H. D. J. Am. Chem. Soc. 2009, 131, 17894. https://doi.org/10.1021/ja9065656
  28. Woodall, J. M. Science 1980, 208, 908. https://doi.org/10.1126/science.208.4446.908
  29. Kogelnik, H. Science 1985, 228, 1043. https://doi.org/10.1126/science.228.4703.1043
  30. Micic, O. I.; Jones, K. M.; Cahil, A.; Nojik, A. J. J. Phys. Chem. 1998, 102, 9791.
  31. Xie, R.; Battaglia, D.; Peng, X. G. J. Am. Chem. Soc. 2007, 129, 15432. https://doi.org/10.1021/ja076363h
  32. Yu, W. W; Peng, X. Angew. Chem. Int. Ed. Engl. 2002, 41, 2368. https://doi.org/10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G
  33. Li, C.; Ando, M.; Enomoto, H.; Murase, N. J. Phys. Chem. C 2008, 112, 20190. https://doi.org/10.1021/jp805491b
  34. Aksoy, F.; Kayali, R.; Oztas, M.; Bedir, M. J. Phys. and Chem. Solids 2008, 69, 835. https://doi.org/10.1016/j.jpcs.2007.09.006
  35. Lucey, D. W.; Macrae, D. J.; Furis, M.; Sahoo ,Y.; Cartwright, A. N.; Prasad, P. N. Chem. Mater. 2005, 17, 3754. https://doi.org/10.1021/cm050110a
  36. Luther, M. J.; Law, M.; Song, Q.; Perkins, C. L.; Beard, M. C.; Nozik, A. J. Acs Nano. 2008, 2, 271. https://doi.org/10.1021/nn7003348
  37. Qu, L.; Peng, X. J. Am. Chem. Soc. 2002, 124, 2049. https://doi.org/10.1021/ja017002j
  38. Micic, O. I.; Nozik, A. J.; Lifshitz, E.; Rajs, T.; Poluektov, O. G.; Thurnauer, M. C. J. Phys. Chem. B 2002, 106, 4390. https://doi.org/10.1021/jp014180q

Cited by

  1. Indium Phosphide-Based Semiconductor Nanocrystals and Their Applications vol.2012, pp.1687-4129, 2012, https://doi.org/10.1155/2012/869284
  2. InP/ZnS–graphene oxide and reduced graphene oxide nanocomposites as fascinating materials for potential optoelectronic applications vol.5, pp.20, 2013, https://doi.org/10.1039/c3nr02333h
  3. InP/ZnS Nanocrystals: Coupling NMR and XPS for Fine Surface and Interface Description vol.134, pp.48, 2011, https://doi.org/10.1021/ja307124m
  4. Cadmium-Free and Efficient Type-II InP/ZnO/ZnS Quantum Dots and Their Application for LEDs vol.13, pp.27, 2011, https://doi.org/10.1021/acsami.1c08118