References
- Klein, D. L.; Roth, R.; Lim, A. K. L.; Alivisatos, A. P.; McEuen, P. L. Nature 1997, 389, 699. https://doi.org/10.1038/39535
- Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi, M. G. Science 2000, 290, 314. https://doi.org/10.1126/science.290.5490.314
- Zhao, J.; Zhang, J.; Jiang, C.; Bohnenberger, J.; Basche, T.; Mews, A. J. Appl. Phys. 2004, 96, 3206. https://doi.org/10.1063/1.1784611
- Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538. https://doi.org/10.1126/science.1104274
- Medinitz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Nat. Mater. 2005, 4, 435. https://doi.org/10.1038/nmat1390
- Alivisatos, A. P.; Gu, W.; Larabell, C. Annu. Rev. Biomed. Eng. 2005, 7, 55. https://doi.org/10.1146/annurev.bioeng.7.060804.100432
- Dahan, M.; Levi, S.; Luccardini, C.; Rostaing, P.; Riveau, B.; Triller, A. Science 2003, 302, 442. https://doi.org/10.1126/science.1088525
- Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nat. Biotechnol. 2003, 21, 47. https://doi.org/10.1038/nbt767
- Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M.; Cohn, L. H.; Bawendi, M. G.; Frangioni, J. V. Nat. Biotechnol. 2004, 22, 93. https://doi.org/10.1038/nbt920
- Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425. https://doi.org/10.1126/science.1069156
- McDonald, S. A.; Konstantatos, G.; Zhang, S.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Nat. Mater. 2005, 4, 138. https://doi.org/10.1038/nmat1299
- Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. 1996, 100, 468. https://doi.org/10.1021/jp9530562
- Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. J. Am. Chem. Soc. 1997, 119, 7019. https://doi.org/10.1021/ja970754m
- Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Nano Lett. 2001, 1, 207. https://doi.org/10.1021/nl0155126
- Lim, J.; Jun, S.; Jang, E.; Baik, H.; Kim, H.; Cho, J. Adv. Mater. 2007, 19, 1927. https://doi.org/10.1002/adma.200602642
- Talapin, D. V.; Rogach, A. L.; Mekis, I.; Haubold, S.; Kornowski, A.; Haase, M.; Weller, H. Colloids Surf., A. 2002, 202, 145. https://doi.org/10.1016/S0927-7757(01)01078-0
- Micic, O. I.; Ahrenkiel, S. P.; Nozik, A. J. Appl. Phys. Lett. 2001, 78, 4022. https://doi.org/10.1063/1.1379990
- Li, Y. D.; Duan, X. F.; Qian, Y. T.; Yang, L.; Ji, M. R.; Li, C. W. J. Am. Chem. Soc. 1997, 117, 7869.
- Guzelian, A. A.; Katari, J. E. B.; Kadavanich, A. V.; Banin, U.; Hamad, K.; Juban, E.; Alivisatos, A. P.; Wolters, R. H.; Arnold, C. C.; Heath, J. R. J. Phys. Chem.1996, 100, 7212. https://doi.org/10.1021/jp953719f
- Micic, O. I.; Sprague, J. R.; Curtis, C. J.; Jones, K. M.; Machol, J. L.; Nozik, A. J.; Giessen, H.; Fluegel, B.; Mohs, G.; Peyghambarian, N. J. Phys. Chem. 1995, 99, 7754. https://doi.org/10.1021/j100019a063
- Micic, O. I.; Curtis, C. J.; Jones, K. M.; Sprague, J. R.; Nozik, A. J. J. Phys. Chem. 1994, 98, 4966. https://doi.org/10.1021/j100070a004
- Battagila, D.; Peng, X. Nano Lett. 2002, 2, 1027. https://doi.org/10.1021/nl025687v
- Xie, R.; Battagila, D.; Peng, X. J. Am. Chem. Soc. 2007, 129, 15432. https://doi.org/10.1021/ja076363h
- Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O'Brien, S.; Murray, C. B. Nature 2006, 439, 55. https://doi.org/10.1038/nature04414
- Liu, G. F.; Sroubek, Z.; Yarmoff, J. A. Phys. Rev. Lett. 2004, 92, 216801. https://doi.org/10.1103/PhysRevLett.92.216801
- Seon, J.; Lee. S. Kim J. M.; Jeong, H. D. Chem. Mater. 2009, 21, 604. https://doi.org/10.1021/cm801557q
- Choi, J. K.; Jang, S.; Sohn, H.; Jeong, H. D. J. Am. Chem. Soc. 2009, 131, 17894. https://doi.org/10.1021/ja9065656
- Woodall, J. M. Science 1980, 208, 908. https://doi.org/10.1126/science.208.4446.908
- Kogelnik, H. Science 1985, 228, 1043. https://doi.org/10.1126/science.228.4703.1043
- Micic, O. I.; Jones, K. M.; Cahil, A.; Nojik, A. J. J. Phys. Chem. 1998, 102, 9791.
- Xie, R.; Battaglia, D.; Peng, X. G. J. Am. Chem. Soc. 2007, 129, 15432. https://doi.org/10.1021/ja076363h
- Yu, W. W; Peng, X. Angew. Chem. Int. Ed. Engl. 2002, 41, 2368. https://doi.org/10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G
- Li, C.; Ando, M.; Enomoto, H.; Murase, N. J. Phys. Chem. C 2008, 112, 20190. https://doi.org/10.1021/jp805491b
- Aksoy, F.; Kayali, R.; Oztas, M.; Bedir, M. J. Phys. and Chem. Solids 2008, 69, 835. https://doi.org/10.1016/j.jpcs.2007.09.006
- Lucey, D. W.; Macrae, D. J.; Furis, M.; Sahoo ,Y.; Cartwright, A. N.; Prasad, P. N. Chem. Mater. 2005, 17, 3754. https://doi.org/10.1021/cm050110a
- Luther, M. J.; Law, M.; Song, Q.; Perkins, C. L.; Beard, M. C.; Nozik, A. J. Acs Nano. 2008, 2, 271. https://doi.org/10.1021/nn7003348
- Qu, L.; Peng, X. J. Am. Chem. Soc. 2002, 124, 2049. https://doi.org/10.1021/ja017002j
- Micic, O. I.; Nozik, A. J.; Lifshitz, E.; Rajs, T.; Poluektov, O. G.; Thurnauer, M. C. J. Phys. Chem. B 2002, 106, 4390. https://doi.org/10.1021/jp014180q
Cited by
- Indium Phosphide-Based Semiconductor Nanocrystals and Their Applications vol.2012, pp.1687-4129, 2012, https://doi.org/10.1155/2012/869284
- InP/ZnS–graphene oxide and reduced graphene oxide nanocomposites as fascinating materials for potential optoelectronic applications vol.5, pp.20, 2013, https://doi.org/10.1039/c3nr02333h
- InP/ZnS Nanocrystals: Coupling NMR and XPS for Fine Surface and Interface Description vol.134, pp.48, 2011, https://doi.org/10.1021/ja307124m
- Cadmium-Free and Efficient Type-II InP/ZnO/ZnS Quantum Dots and Their Application for LEDs vol.13, pp.27, 2011, https://doi.org/10.1021/acsami.1c08118