DOI QR코드

DOI QR Code

Synthesis and Photodynamic Activities of Pyrazolyl and Cyclopropyl Derivatives of Purpurin-18 Methyl Ester and Purpurin-18-N-butylimide

  • Yoon, Il (PDT Research Institute, School of Nano System Engineering, Inje University) ;
  • Park, Ho-Sung (PDT Research Institute, School of Nano System Engineering, Inje University) ;
  • Cui, Bing Cun (PDT Research Institute, School of Nano System Engineering, Inje University) ;
  • Kim, Jung-Hwa (PDT Research Institute, School of Nano System Engineering, Inje University) ;
  • Shim, Young-Key (PDT Research Institute, School of Nano System Engineering, Inje University)
  • Received : 2010.09.14
  • Accepted : 2010.11.08
  • Published : 2011.01.20

Abstract

The synthesis of new pyrazolyl and cyclopropyl derivatives of purpurin-18 methyl ester and purpurin-18-N-butylimide 1a, 1b, 2a, 2b and 8 is described. The new compounds were characterized by NMR, UV-vis spectroscopy and mass spectrometry. UV-vis spectra of the new compounds showed long wavelength absorption of ranges 692 - 708 nm ($\lambda_{max}$). Photodynamic effects of the chlorin derivatives 1a, 1b, 2a and 2b were investigated by WST-1 assay in A549 cells, and showed good photodynamic activities with high photocytotoxicity and low cytotoxicity in the dark. In comparison between pyrazolyl and cyclopropyl derivatives, purpurin-18 methyl ester compounds 1a and 1b showed comparable photocytotoxicity result of the cell viabilities, otherwise, pyrazolyl derivative of purpurin-18-N-butylimide 2a showed better cell viabilities than those of cyclopropyl derivative 2b. And cyclopropyl derivative of purpurin-18-N-butylimide 2b showed higher dark cytotoxicity than that of others.

Keywords

References

  1. Bonnet, R. In Chemical Aspects of Photodynamic Therapy; Gordon and Breach Science Publishers: Netherlands, 2000.
  2. Pandey, R. K.; Zheng, G. In Porphyrins as Photosensitizers in Photodynamic Therapy, In The Porphyrin Handbook; Kadish, Smith, Guilard, Eds.; Academic Press: New York, 2000; Vol. 6, p 157.
  3. Sharman, W. M.; van Lier, J. E.; Allen, C. M. Adv. Drug Delivery Rev. 2004, 56, 53. https://doi.org/10.1016/j.addr.2003.08.015
  4. Kim, N. R.; Kim, S.; Kim, J. D.; Huh, D. S.; Shim, Y. K.; Choe, S. J. Bull. Korean Chem. Soc. 2009, 30, 205. https://doi.org/10.5012/bkcs.2009.30.1.205
  5. Luguya, R.; Jensen, T. J.; Smith, K. M.; Vicente, M. G. H. Bioorg. Med. Chem. 2006, 14, 5890. https://doi.org/10.1016/j.bmc.2006.05.026
  6. Kessel, D. Photochem. Photobiol. 2008, 84, 809. https://doi.org/10.1111/j.1751-1097.2007.00267.x
  7. Bayarmaa, B.; Bayarmaa, B.; Lee, W.-K.; Shim, Y. K. Bull. Korean Chem. Soc. 2008, 29, 237. https://doi.org/10.5012/bkcs.2008.29.1.237
  8. Pandey, R. K. J. Porphyrins Phthalocyanines 2000, 4, 368. https://doi.org/10.1002/(SICI)1099-1409(200006/07)4:4<368::AID-JPP244>3.0.CO;2-6
  9. Faust, R. Eur. J. Org. Chem. 2001, 2797.
  10. Manna, F.; Chimenti, F.; Fioravanti, R.; Bolasco, A.; Secci, D.; Chimenti, P.; Ferlini, C.; Scambia, G. Bioorg. Med. Chem. Lett. 2005, 15, 4632. https://doi.org/10.1016/j.bmcl.2005.05.067
  11. Salaun, J.; Bair, M. S. Curr. Med. Chem. 1995, 2, 511.
  12. Smith, K. M. In Porphyrins and Metalloporphyrins; Smith, K. M., Ed.; Elsevier: Amsterdam, 1975.
  13. Kozyrev, A. N.; Alderfer, J. L.; Robinson, B. C. Tetrahedron 2003, 59, 499. https://doi.org/10.1016/S0040-4020(02)01525-9
  14. Wang, J.-J.; Li, J.-Z.; Gryko, D.; Shim, Y. K. Bull. Korean Chem. Soc. 2006, 27, 1083. https://doi.org/10.5012/bkcs.2006.27.7.1083
  15. Galindev, O.; Badraa, N.; Shim, Y. K. J. Porphyrins Phthalocyanines 2007, 11, 829. https://doi.org/10.1142/S1088424607000953
  16. Rungta, A.; Zheng, G.; Missert, J. R.; Potter, W. R.; Dougherty, T. J.; Pandey, R. K. Bioorg. Med. Chem. Lett. 2000, 10, 1463. https://doi.org/10.1016/S0960-894X(00)00274-2
  17. Nishizaki, M.; Meyn, R. E.; Levy, L. B.; Atkinson, E. N.; White, R. A.; Roth, J. A.; Ji, L. Clinical Cancer Research 2001, 7, 2887.
  18. Zheng, G.; Potter, W. R.; Camacho, S. H.; Missert, J. R.; Wang, G.; Bellnier, D. A.; Henderson, B. W.; Rodgers, M. A. J.; Dougherty, T. J.; Pandey, R. K. J. Med. Chem. 2001, 44, 1540. https://doi.org/10.1021/jm0005510
  19. Ngamwongsatit, P.; Banada, P. P.; Panbangred, W.; Bhunia, A. K. J. Microbiol. Methods 2008, 73, 211. https://doi.org/10.1016/j.mimet.2008.03.002
  20. Smith, K. M.; Goff, D. A.; Simpson, D. J. J. Am. Chem. Soc. 1985, 107, 4946. https://doi.org/10.1021/ja00303a021

Cited by

  1. Photodynamic and Antioxidant Activities of Divalent Transition Metal Complexes of Methyl Pheophorbide-a vol.32, pp.spc8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2981
  2. ChemInform Abstract: Synthesis and Photodynamic Activities of Pyrazolyl and Cyclopropyl Derivatives of Purpurin-18 Methyl Ester and Purpurin-18-N-butylimide. vol.42, pp.22, 2011, https://doi.org/10.1002/chin.201122105
  3. Synthesis and Characterization of Novel Purpurinimides as Photosensitizers for Photodynamic Therapy vol.15, pp.5, 2014, https://doi.org/10.3390/ijms15058091
  4. Tumor Size-Dependent Anticancer Efficacy of Chlorin Derivatives for Photodynamic Therapy vol.19, pp.6, 2018, https://doi.org/10.3390/ijms19061596
  5. Mitochondrial Targeting Cationic Purpurinimide–Polyoxometalate Supramolecular Complexes for Enhanced Photodynamic Therapy with Reduced Dark Toxicity vol.2021, pp.31, 2011, https://doi.org/10.1002/ejic.202100485