DOI QR코드

DOI QR Code

Highly Homogeneous Carbon Nanotube-Polycaprolactone Composites with Various and Controllable Concentrations of Ionically-Modified-MWCNTs

  • Lee, Hae-Hyoung (Department of Biomaterials Science, School of Dentistry, Dankook University) ;
  • Shin, Ueon-Sang (Biomaterials and Tissue Engineering Lab., Department of Nanobiomedical Science & WCU Research Center, Dankook University) ;
  • Jin, Guang-Zhen (Institute of Tissue Regeneration Engineering (ITREN), Dankook University) ;
  • Kim, Hae-Won (Department of Biomaterials Science, School of Dentistry, Dankook University)
  • 투고 : 2010.06.18
  • 심사 : 2010.11.03
  • 발행 : 2011.01.20

초록

For the fabrication of multifunctional biopolymer nanocomposites in the combination of carbon nanotubes (CNTs), recently increasing attention has been paid to an effective homogenization of CNTs within polymer matrices and a fine tuning of the concentration. We developed an efficient method to produce homogeneous CNT-polycaprolactone nanocomposites with various and controllable CNT concentrations using an ionically-modified multi-walled CNT, MWCNT-Cl. The modified MWCNTs could be homogeneously dispersed in tetrahydrofuran (THF). Polycaprolactone (PCL) as a biodegradable and biocompatible polymer was smoothly dissolved in the homogeneous MWCNT-Cl/THF solution without agglomeration of MWCNT-Cl. The physicochemical and mechanical properties of the resultant nanocomposites were examined and the biological usefulness was briefly assessed.

키워드

참고문헌

  1. Tans, S. J.; Devoret, M. H.; Dai, H.; Thess, A.; Smalley, R. E.; Geerligs, L. J.; Dekker, C. Nature 1997, 386, 474. https://doi.org/10.1038/386474a0
  2. Zhang, W. D.; Phang, I. Y.; Liu, T. X. AdV. Mater. 2006, 18, 73. https://doi.org/10.1002/adma.200501217
  3. Moon, S. I.; Jin, F.; Lee, C. J.; Tsutsumi, S.; Hyon, S. H. Macromol. Symp. 2005, 224, 287. https://doi.org/10.1002/masy.200550625
  4. Liu, J.; Rinzler, A. G.; Dai, H.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science 1998, 280, 1253. https://doi.org/10.1126/science.280.5367.1253
  5. Wang, Y.; Iqbal, Z.; Mitra, S. J. Am. Chem. Soc. 2006, 128, 95. https://doi.org/10.1021/ja053003q
  6. Chiu, W.-M.; Chang, Y.-A.; Kuo, H.-Y.; Lin, M.-H.; Wen, H.-C. J. Appl. Poly. Sci. 2008, 108, 3024. https://doi.org/10.1002/app.27796
  7. Kumar, N. A.; Ganapathy, H. S.; Kim, J.-S.; Jeong, Y.-S.; Jeong, Y.-T. Eur. Polym. J. 2008, 44, 579. https://doi.org/10.1016/j.eurpolymj.2007.12.009
  8. Zhao, Y.; Qiu, Z.; Yang, W. J. Phys. Chem. B 2008, 112, 16461. https://doi.org/10.1021/jp805230e
  9. Chen, G.-X.; Shimizu, H. Polymer 2008, 49, 943. https://doi.org/10.1016/j.polymer.2008.01.014
  10. Liu, T.; Phang, I. Y.; Shen, L.; Chow, S. Y.; Zhang, W.-D. Macromolecules 2004, 37, 7214. https://doi.org/10.1021/ma049132t
  11. Gao, J.; Zhao, B.; Itkis, M. E.; Bekyarova, E.; Hu, H.; Kranak, V.; Yu, A.; Haddon, R. C. J. Am. Chem. Soc. 2006, 128, 7492. https://doi.org/10.1021/ja057484p
  12. Zeng, H.; Gao, C.; Yan, D. Adv. Funct. Mater. 2006, 16, 812. https://doi.org/10.1002/adfm.200500607
  13. Van Natta, F. J.; Hill, J. W.; Carruthers, W. H. J. Am. Chem. Soc. 1934, 56, 455. https://doi.org/10.1021/ja01317a053
  14. Sinha, V. R.; Bansal, K.; Kaushik, R.; Kumria, R.; Trehan, A. Int. J. Pharm. 2004, 278, 1. https://doi.org/10.1016/j.ijpharm.2004.01.044
  15. Choi, D. S.; Kim, J. H.; Shin, U. S.; Deshmukh, R. R.; Song, C. E. Chem. Commun. 2007, 3482.

피인용 문헌

  1. Effect of carbon nanotube coating of aligned nanofibrous polymer scaffolds on the neurite outgrowth of PC-12 cells vol.35, pp.7, 2011, https://doi.org/10.1042/CBI20100705
  2. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction vol.101A, pp.6, 2012, https://doi.org/10.1002/jbm.a.34470
  3. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation vol.104, pp.6, 2015, https://doi.org/10.1002/jbm.b.33432
  4. Multiwall carbon nanotubes/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration vol.27, pp.2, 2016, https://doi.org/10.1007/s10856-015-5640-y
  5. Production of Carbonaceous Materials with Various Lengths in Small Spheroidal Fullerenes and Long CNTs by Tunable Multi-walled Carbon Nanotube Cutting vol.37, pp.10, 2016, https://doi.org/10.1002/bkcs.10876
  6. Core-Shell Structured Chitosan-Carbon Nanotube Membrane as a Positively Charged Drug Delivery System: Selective Loading and Releasing Profiles for Bovine Serum Albumin vol.37, pp.4, 2016, https://doi.org/10.1002/bkcs.10712
  7. Effect of Starch-MWCNT@Valine Nanocomposite on the Optical, Morphological, Thermal, and Adsorption Properties of Chitosan vol.25, pp.3, 2017, https://doi.org/10.1007/s10924-016-0874-4
  8. Preparation of Alkylated and Perfluorinated ZnPc-modified Carbon Nanotubes and their Application as Conductive Fillers for Poly(vinylidene fluoride) Composite Dielectrics vol.38, pp.10, 2017, https://doi.org/10.1002/bkcs.11246
  9. -caprolactone)/Zinc Oxide Nanocomposites with High Zinc Oxide Content vol.50, pp.12, 2011, https://doi.org/10.1080/00222348.2011.623999
  10. Poly(ε-caprolactone)–carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells vol.8, pp.11, 2013, https://doi.org/10.2217/nnm.12.204
  11. Morphology, Nucleation, and Isothermal Crystallization Kinetics of Poly(ε-caprolactone) Mixed with a Polycarbonate/MWCNTs Masterbatch vol.9, pp.12, 2017, https://doi.org/10.3390/polym9120709
  12. Additive Manufacturing for Guided Bone Regeneration: A Perspective for Alveolar Ridge Augmentation vol.19, pp.11, 2018, https://doi.org/10.3390/ijms19113308
  13. Facile production of nanocomposites of carbon nanotubes and polycaprolactone with high aspect ratios with potential applications in drug delivery vol.8, pp.30, 2018, https://doi.org/10.1039/C7RA13553J
  14. Carbon Nanotubes in Nanocomposites and Hybrids with Hydroxyapatite for Bone Replacements vol.2, pp.None, 2011, https://doi.org/10.4061/2011/674287
  15. Positive Charge-doping on Carbon Nanotube Walls and Anion-directed Tunable Dispersion of the Derivatives vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1635
  16. Multifaceted prospects of nanocomposites for cardiovascular grafts and stents vol.10, pp.None, 2011, https://doi.org/10.2147/ijn.s80121
  17. Fluorescent composite scaffolds made of nanodiamonds/polycaprolactone vol.641, pp.None, 2015, https://doi.org/10.1016/j.cplett.2015.10.037
  18. Cover BKCS 10/2016 vol.37, pp.10, 2016, https://doi.org/10.1002/bkcs.10515
  19. Barium-Encapsulated Biodegradable Polycaprolactone for Sulfate Removal vol.10, pp.12, 2011, https://doi.org/10.3390/w10121789
  20. Highly osteogenic and mechanically strong nanofibrous scaffolds based on functionalized multi-walled carbon nanotubes-reinforced electrospun keratin/poly(ε-caprolactone) vol.27, pp.None, 2021, https://doi.org/10.1016/j.mtcomm.2021.102401
  21. A Brief Review on the Influence of Ionic Liquids on the Mechanical, Thermal, and Chemical Properties of Biodegradable Polymer Composites vol.13, pp.16, 2011, https://doi.org/10.3390/polym13162597