References
- G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal. 54 (2003), no. 4, 651-665. https://doi.org/10.1016/S0362-546X(03)00092-0
- G. Bonanno and N. Giovannelli, An eigenvalue Dirichlet problem involving the p-Laplacian with discontinuous nonlinearities, J. Math. Anal. Appl. 308 (2005), no. 2, 596-604. https://doi.org/10.1016/j.jmaa.2004.11.053
- K.-C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), no. 1, 102-129. https://doi.org/10.1016/0022-247X(81)90095-0
- H. Dang and S. F. Oppenheimer, Existence and uniqueness results for some nonlinear boundary value problems, J. Math. Anal. Appl. 198 (1996), no. 1, 35-48. https://doi.org/10.1006/jmaa.1996.0066
- M. A. del Pino, R. Manasevich, and A. Murua, Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE, Nonlinear Anal. 18 (1992), no. 1, 79-92. https://doi.org/10.1016/0362-546X(92)90048-J
- C. Fabry and D. Fayyad, Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities, Rend. Istit. Mat. Univ. Trieste 24 (1992), no. 1-2, 207-227.
- L. Gasinski, Multiplicity theorems for periodic systems with a p-Laplacian-like operator, Nonlinear Anal. 67 (2007), no. 9, 2632-2641. https://doi.org/10.1016/j.na.2006.09.028
- L. Gasinski and N. S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Chapman and Hall, CRC, Boca Raton, 2005.
- L. Gasinski and N. S. Papageorgiou, On the existence of multiple periodic solutions for equations driven by the p-Laplacian and with a non-smooth potential, Proc. Edinb. Math. Soc. (2) 46 (2003), no. 1, 229-249. https://doi.org/10.1017/S0013091502000159
- Z. M. Guo, Boundary value problems of a class of quasilinear ordinary differential equations, Differential Integral Equations 6 (1993), no. 3, 705-719.
- N. Kourogenis and N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear elliptic equations at resonance, Kodai Math. J. 23 (2000), no. 1, 108-135. https://doi.org/10.2996/kmj/1138044160
- J. Mawhin, Periodic solutions of systems with p-Laplacian-like operators, Nonlinear analysis and its applications to differential equations (Lisbon, 1998), 37-63, Progr. Nonlinear Differential Equations Appl., 43, Birkhauser Boston, Boston, MA, 2001.
- S. A. Marano and D. Motreanu, On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems, Nonlinear Anal. 48 (2002), no. 1, Ser. A: Theory Methods, 37-52. https://doi.org/10.1016/S0362-546X(00)00171-1
- E. H. Papageorgiou and N. S. Papageorgiou, Two nontrivial solutions for quasilinear periodic equations, Proc. Amer. Math. Soc. 132 (2004), no. 2, 429-434 https://doi.org/10.1090/S0002-9939-03-07076-X
- B. Ricceri, On a three critical points theorem, Arch. Math. (Basel) 75 (2000), no. 3, 220-226. https://doi.org/10.1007/s000130050496
- M. Struwe, Varaitional Methods, Springer-Verlag, Berlin, 1996.
Cited by
- Nonlinear, Nonhomogeneous Periodic Problems with no Growth Control on the Reaction vol.21, pp.3, 2015, https://doi.org/10.1007/s10883-014-9245-4