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SOME TOEPLITZ OPERATORS ON
WEIGHTED BERGMAN SPACES

St Ho KANG

ABSTRACT. We consider the problem to determine when a Toeplitz op-
erator is bounded on weighted Bergman spaces. We show that Toeplitz
operators induced by elements of some set are bounded and each element
of the set is related with a Carleson measure on the weighted Bergman
space.

1. Introduction

Let dA denote normalized Lebesgue area measure on the unit disk . For
a > —1, the weighted Bergman space A2 consists of the analytic functions
in L?(D, dA,,), where dA,(z) = (a +1)(1 — |z|2)adA(z). Then A2 is closed in
L?*(D,dA,) and for each z € D, there is a reproducing kernel K& in A2 such that
f(z) = {(f,K) for all f € A2 in fact, K%(w) = m and the normalized
_ a-z)*E
= “{Tzw)Te

where the norm || ||, , and the inner product are taken in the space L*(D, dA,).

reproducing kernel k2 is the function ﬁ, that is, k%(w)
zll2a

A linear operator S on A2 induces a function S on D given by S (2) =
(SEZ,k2), z € D. The function S is called the Berezin transform of S.

For u € L' (D, dA), the Toeplitz operator T with symbol u is the operator on
A2 defined by T(f) = Pa(uf), f € A2, where P, is the orthogonal projection
from L?(D,dA,) onto A% and let @ denote fé Then the Toeplitz operator 1.
is bounded whenever u € L>(D,dA) but every element of L*(ID,dA) dose not
imply the boundness of the Toeplitz operator T.¢. Since L (D, dA) is dense in
LY(D,dA), T is densely defined on A2. We note that Berezin transforms and
Carleson measures are useful tools in the study of Toeplitz operators ([2], [4],
[5]). Using those tools, many mathematicians working in operator theory are
characterized the boundedness and compactness of Toeplitz operators.
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In this paper, we prove that Toeplitz operators with special symbols are
bounded and [|ukZ[|, , having vanishing property implies the compactness of
the Toeplitz operator T'.

Section 3 contains some properties of special symbols, that is, each element
of some set implies a Carleson measure and we deal with appropriate products
of Toeplitz operators and Hankel operators.

2. Unitary operator and example

Let Aut(DD) denote the set of all bianalytic maps of D onto D. By Schwarz’s
lemma, each element of Aut(DD) is a linear fractional transformation of the form
Az, |A| =1, where ¢, (w) = =%, w € D. Then ¢ 0y, is the identity function
on D and Aut(D) is called the Mobius group under composition. For a > —1

G
and z € D, we define U f(w) = f o @Z(w)%, fe LA(D,dA,), w € D.
A simple compactation shows that U2 is an isometry. Since (1 — Zp,(w))**? =

a+2
(M) , U2U? is the identity operator and hence (U2)* = (U2)™! = U2,

1-zw
that is, U2 is a self-adjoint unitary operator on A%. Moreover, UY(AZ%) = A2
and Ug[ 42 is also denoted by U and UX1 = kg (w).

For a linear operator S on A2,
UxSuUs.

Now we are ready to state useful properties.

we define the conjugate operator S, by

Lemma 2.1. Foru € L'(D,dA) and z €D, (TY), =T

z — Tuopy-’

Proof. Since (T'), = USTZUS and (U2)™! = U2, it is enough to show that

UsT® =T, U%. Take any f in A2 and any w in D. Then

UZT () (w)
= U Po(uf)(w)

(1—|)*"

= Pa(uf)(%(w))m

_ OO TR NN e E D

sy | (- Oz

_ e (L—zw)*t (-
= (o 1) w00 1) o )
s [ B ¢ e T

= (0 1) fu0rO0 - )" A

2P S (s)FdA(s
=@ +1) [wop ) 0po)1 - Ipulo)t)" LD _Le(ILAA) -
b (1~ 20— 2p-(3) + wpa(9)
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O U T M Rl O

11 —zs]* 11— zs|*

SICaRl) REFACIZERE
(1 — 25)°TdA(s)
(1= P s

- <a+1>/Duosoz<s>fosoz(s>

X

(1= s = |22 (1 = 25)* dA(s)

1—2s)%(1 —25)*(1 —25)*(1 — 25)°(1 — ws)*™*

(
2y2 L, s
= (Oé + 1)/@” © (Pz(s)f © (Pz(s) Ei ::9|)¢3+2(1(1_ wL)L-i)-a dA(S)
= [weeeneso T
= Pa(uo .U f)(w).
Thus (T}7), = Ty, - U

Corollary 2.2. Ifuy,...,u, € L*(D,dA), then
Uiy, - Ty, U = Tmosoz o 'Tunowz~
Proof. It follows from the fact that UJUS is the identity. g

Proposition 2.3. For u € L'(D,dA) and z € D, ’fé o, = (TE‘)Z

—~—

P

Proof. Since (T}'), = T, it is enough to show that 7%, , =T o ..
Take any ¢ in D. Then
T o ‘PZ( )

U goz t)a <p (t)>

— (T2
= (P ( o) Ko 1)
< t)’(p(t)>
/ k«p(t)( )dA()
1—|z|><1—|t|> TR - T a—EPa-pp
/ T ) (ima—ars) = )
2+«

(i) (a+1)(1 — |z[*) " dA(z)

1—-Zt—zx+1tx

1+2 1 1+% 1 - ZE 2o 2 1+%
-1 () (o) =)
(1—-2zt)(1 — 2t) 1—z2t—ZzZx+tx

e 7) T as) e - aaw)

)2+a 1
(1_%)(1_[ 1—2t—z2x+1tx
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B 2. 1+% 1—2zx Zta o 148 1—27 2ta
- /Du(x)(l 14°) (17§xffz+fx) (L= [¢7) (1—zf—t5+tf)
+2
BECEE | “)"
— 2 dA.(x
- /D“wz(sw( kg (5)dAal(s)
= (uo .k, ki)
— (Paluo p:k?), k?)
= (Tiop ki ki)
- T’l?otpz( )
This completes the proof. O

We will show that the Toeplitz operators with special symbols are bounded.
To do so, we need the following proposition, in fact, the following proposition
holds for every linear operator on A2.

Proposition 2.4. If S is a linear operator on A2 and z,w € D, then (S,)" =
(5*), and SK2(w) = S*K2(z).

Proof. Take any f, g in A%. Since (S.f,g) = (USUSf,q) = (f,U2S*Ug) =

(f,(S*).,9),(S-)" = (S*),. For the 2nd equality, SK2(w) = (SK¥ K2) =
(K$,5*KS) = S*K&(z). O
Si Ka( )7 1 _ Zoo (n+2+a)—n ka( ) (1 7| | )1+2

mce (1 Zw)?Te T £un=0 n'l"(2+oz)

00, B2t znpn, We define S(Y apw™) = 3 ap(—w)"™. Then S(K2(w))

n=0 nll'(2+a)

=3 %E“(—l)"w = K%(—w) and S has an infinite-dimensional

range and S is an isometry and invertible, that is, S* = S~! = S. Thus
~ 2+«
S is not compact. Since S(z) = (Sk¥ k%) = (1—|z%) - (SK2, K%) =

2 _ 24« ~
(1—1z% +QK§‘(7,Z) = (iﬂli\lz) , lim,_,op S(z) = 0 and hence the van-
ishing property does not imply the compactness of operators.

3. Toeplitz operators with special symbols

This section deals with Toeplitz operators with special symbols. We begin by
constructing some set and show that each element of the set implies a bounded
linear operator. Recall that P, is the orthogonal projection from L?(D,dA,)
onto A2 and for z € D and f € L?(D,dA,), Pu(f)(2) = (Pu(f),K) =
Jp f( )dA ( ). Moreover, We extend the domain of P, to L'(D,dA,)

and for f e Al le) ( Fwlddew) e D (see [5]).

1— zw)2+u )



SOME TOEPLITZ OPERATORS ON WEIGHTED BERGMAN SPACES 145

Let MK = {u € L*(D,dA) : supyep [ukS ], , < oo for every p € (1,00)},
where || - ||, , is the norm on LP(D, dA,). Since [[ukx|l, , = [[@kx|| MK is
closed under the formation of conjugations.

Lemma 3.1. For anyu e MK, (T$)" = T2.

Proof. Take any f.g in A% Since (T21.g) = (Pa(uf).) = (uf.g) = {f.7g) =
(f, Pa(Tg)) = (f,Tgg), (T)" = Tg. O
Lemma 3.2. Suppose u € MK, z € D, and p € (1,00). Then there is a

constant ¢ > 0 such that [|(T3) 1]], , < c||uk°‘|\

p,a?

Proof. Since (T)), = U2TSUY and UZ1 = k2, ||(T7‘f)zl||pa = U210,

= [|US Pa(uk)l, 0 < [1PallllukZll, o and hence [|(T3) 1], , < clukZ], , for
some c. 0

Suppose f € A and w E D. Then (Tp f)(w) = (T f, K3) = (f,(T2) K)
= o f)(TS) Kg(2)d = [o f)(TeKS)(w)dAq(z), here the last equal-

ity follows from Propomtlon 2.4. ThUb T is the integral operator with kernel
(T3 KE2)(w).

Lemma 3.3. Suppose 0 < t, s € (1,00) and u € MK. Then there is

a constant ¢ > 0 such that fD I(gﬂl{z ‘)()w)‘ < c(\llu_kli;l\lz)? for all z € D and
(TEK)( w)| cl[uk
fD oy dA,(z )_7(1 e for all w € D.
. 2145 0 e pra . US(TE) 1 (Tf)“%%
Proof. Since k®=(1—|z]*) " * K% ToK>= T TP
and hence
ToK)(
/ IR 4 A )
(1 — |w]
a (1-z)&*? 20
B / (T3 )zl)wz(w)l g (L= [w]) dA(w)
D =17 = P
(T). DM = a o2
-/ 1220 (1 o, ()P) ()] dA()
D (L =1lp=(NI)
|1 ZA* +2 « 2
- (T DOy (1 a0 - N (= BP)
=E \ ) s M)’ 11— zA I1—zA*

A 1
- _adA(/\)
1—|z| / 1~ zAIQ = (1—2?)

1 1 7
<l f , = dAW)
(1—]2P o D1 — ZA[G72F (1 62 )
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where s and s’ are conjugate exponents.

By Lemma 3.2, there is a constant cy, such that [[(T;7) 1]], , < cillukZ|, ,
1
o 1 s/ . . o
Let ¢ = cl(fD TSN Ee dA()\)) . If ¢ is infinity, then triv
ially the inequality holds and hence [ |(TKi)(w)‘dA (w) < % Propo-

(1—Jw[?)"
sition 2.4 and Lemma 3.1 and MK C M K imply that there is a constant ¢ such

(TS KS)(w)] [ AIO]] cllakyll, o .
that [ o dAs(z) = [ TP dA,(z) < i This completes
the proof. |
Suppose a # 0. Then there is ¢ > 0 such that s’ = = 2 =~ >1and

1 1
/ (2—2t4a)s’ 2. ts'—a dA()‘> = / 5 2 3 dA()\)
D|1—§)\| £ (1—|/\‘ ) D‘1_§A|g(1_|>\| )o

Axler’s paper ([1], Lemma 4) asserts that the last integral is finite. In Lemma
3.3, ¢ is finite.

Theorem 3.4. For each v € MK, T is bounded.

Proof. Let h(\) = By the above observation and Lemma 3.3,

(1 \Al )"
(TOKY)( (TOKY)(
/ T KD ) (w)] Aq(w) < e1h(z) and / I dAa(z) < egh(w),

(1- |’w| (-1
where ¢; = csup ||uk?||, , and ¢z = csup ||ukg ||, .,
The Schur’s test (see page 126 of [3]) implies that 7% is bounded and ||T%]| <
U

4/C1C2.

Recall that T, is the integral operator with kernel (T¢K%)(w), that is,

(Tefw) = [p FENTIKY)(w )dA( ). For 0 < r < 1, we define an op-
erator TO‘ on A2 by (To‘f = fTDf VTOK2(w)dA(z), f € A%, Since
Jo Jo 1 T8 K2 (w)xom (2)[*d Aa (w )dA = [ S ITE K (w)[*dAa(w)dAa(z) =

LMEW%%4U<MWJ’M“MM)<%E%&MMWKF®X
D,dA, x dA,) and hence T is a Hilbert-Schmidt operator. Thus each T/ is

t
compact. Let h(\) = (ﬁ) . By Lemma 3.3 and Theorem 3.4,
/ T2 K () xorr0(2) h(w)dAa(w) < c1h(z) and

/waa W)xrp (2)(2)dAa (2) < cxh(w),

where ¢; = csup,<|.j<1 ||uk || and ¢y = csup [[ukg|, . The Schur’s test

implies that ||T¢ — T < c1 02 If lim, op [|uk?|, , =0, then lim, ;- ¢ =0
and hence lim, - ||TY — T)%|| = 0. Since each T is compact, T, is also a
compact operator. Thus we have the following theorem.
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Theorem 3.5. Let u € MK. If lim._op [[ukZ]], , = 0 for every p € (1,00),
then T\ s a compact operator.

We note that AP, consists of the analytic functions in LP(ID,dA,). Suppose
 is a finite positive Borel measure on D and p > 1. Recall that if 4, : AL —
L?(D,du) is bounded, then p is called a Carleson measure on the Bergman
space AP and Carleson measures are very useful tools in operator theory.

Proposition 3.6. Foru € MK, |u|dA, is a Carleson measure on AP.

Proof. Tt is enough to show that @ is bounded. For w € D, |u(w)|=|{T3kS, k)|

u w? T w

= [(Pa(uky), ko)| = [(uky, k5)| < [Jukglly,, < oo. Thus |u|dA, is a Carleson

w? tw

measure on A?. O
Corollary 3.7. Foru e MK, T is a bounded linear operator.
Proof. Tt follows from the fact that |u|dA, is a Carleson measure. O

Using the concept of a Carleson measure, we can give another proof for
Theorem 3.5.

Proposition 3.8. If [[ukZ|,, — 0 as z — 9D for every p € (1,00) and
u € MK, then T is compact.

Proof. Let’s show that |u|dA, is a vanishing Carleson measure on the Bergman
space AF. To do so, it is enough to show that lim,_,;- |u|(z) = 0. For z €
D, lu(z)| = (Tks k)| = [(ukg, k)| < ukglly oIk 15,0 = lukgly o The
property lim,| ;- [[ukZ, , = 0 implies that |u|dA, is a vanishing Carleson
measure. Thus 7}, is compact. Since | [ ful?udAs] < [ | ful®uldAa, TS is
also compact. (Il

We define an operator HY : A2 — (Ai)l by
H;(g) = (I — Pa)(ug), g € A2

Then HY is called the Hankel operator on the weighted Bergman space with
symbol u. Clearly H® is densely defined for any u € L'(D,dA) and if u €
L>(D,dA), then HY is bounded with ||Hg || < ||lul -

Proposition 3.9. Ifu?> € MK, then H® is bounded.

Proof. Take any f in AZ. Then [|Hg ()5, = (T = Pa)(wf)ll5,0 < llufl5, =
Jo |£(2)*Ju(2)]?dAs(2). By Proposition 3.6, |u|>dA, is a Carleson measure on
A2 and hence there is a constant ¢ < oo such that [ 1F(2) P |u(z)PdAs(z) <
clp |f(2)]?dAq(z). Thus HY is bounded. O

Corollary 3.10. (1) Suppose u*> € MK. Then (HY),1 and HZkS are in
L?(D,dA,) for every z € D.
(2) Suppose u> € MK and z € D. Then HZ o ¢, is bounded.
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Proof. (1) We note that [|[HUZ1|, , = [[H3kZ |, ,, and hence [[(Hg) 1], , =
[HgkS Nl o - Since [[(H) |1, , = [USHZUZ g o = [[HZRZ 20 < [H, we
have the results.

(2) By Lemma 2.1, (T}"), = T, Then (HY),=I-T%), = I-Tg,. =
Hy,, . For f € A%, [Hioo (D, = IH).(Hlly, = IVSHZUS ()50 =
IHZUZ (g < IHZNU(oe = 1HE N Fll5,0- Thus [Hiop | < [ HZ||
Since H is bounded, H, , is bounded. (]

0

Consider some products of Toeplitz operators and Hankel operators. The

simple calculation implies that H>* HS = Tﬁilz —ToTe. Suppose u € L'(D,dA)

and f € A2. Since HOf(2) = u(2) f(2) = Po(uf)(2) = u(2){f, K)—(uf, K&) =
((u(z) = u) f, K2) for g € (A2)",

(HE f.g) = / / (uz) — () K& (@) f (0)dAn ()g(2)dAa (2)
- / f(w) / (u(2) — u(w))g(2) K2 (2)dAa(2)dA (w)
D D
- / Fw) (CHD glw)dAa(w) = (f, —HEg)
He

and hence H2* = —
Suppose u,v,u?w? are in MK. If H® is compact, then the following are
compact:
(i) TS,

Corollary 3.11. Suppose u1,...,u, € MK and z € D. Then
UHy ---Hy UY=H} - HY

U10pz U10pz "

, =TT (i) T2, — ToT® (i) HOT®  (iv) HOH®* = HOHZ.

Proof. It follows from the fact that UJU is the identity operator. O

Corollary 3.12. Suppose uy, uy € L*(D,dA). If u; = ugo, for some z € D,
then HYY and Hp, are unitary equivalent.

Proof. By Corollary 3.10, H,, = (Hy), and hence H2, = (H,,)_. Thus Hg,
and Hy, are unitary equivalent. ([l
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