
Bull. Korean Math. Soc. 48 (2011), No. 1, pp. 115–127

DOI 10.4134/BKMS.2011.48.1.115

A CONCEPT UNIFYING THE ARMENDARIZ AND

NI CONDITIONS

Young Chun, Young Cheol Jeon, Sungkyung Kang, Key Nyoung Lee,
and Yang Lee

Abstract. We study the structure of the set of nilpotent elements in
various kinds of ring and introduce the concept of NR ring as a general-
ization of Armendariz rings and NI rings. We determine the precise re-

lationships between NR rings and related ring-theoretic conditions. The
Köthe’s conjecture is true for the class ofNR rings. We examined whether
several kinds of extensions preserve the NR condition. The classical right
quotient ring of an NR ring is also studied under some conditions on the

subset of nilpotent elements.

1. NR rings

Throughout this note every ring is associative with identity unless otherwise
stated. Given a ring R, N∗(R), N∗(R), J(R), and N(R) denote the prime
radical, the upper nilradical (i.e., sum of nil ideals), the Jacobson radical, and
the set of all nilpotent elements in R, respectively. Note N∗(R) ⊆ N∗(R) ⊆
N(R) and N∗(R) ⊆ J(R).

A ring is called reduced if it has no nonzero nilpotent elements. In the fol-
lowing we consider two kinds of generalizations of commutative rings. Due to
Marks [20], a ring R is called NI if N∗(R) = N(R). Note that R is NI if
and only if N(R) forms an ideal if and only if R/N∗(R) is reduced. According
to Birkenmeier et al. [5], a ring R is called 2-primal if N∗(R) = N(R). It is
obvious that R is 2-primal if and only if R/N∗(R) is reduced. Marks [21] gave
almost complete characterizations for 2-primal rings, with constructive delim-
iting examples. Note that a ring R is reduced if and only if R is nil-semisimple
(i.e., R has no nonzero nil ideals) and NI if and only if R is semiprime and
2-primal. It is obvious that 2-primal rings are NI, but the converse need not
hold by Birkenmeier et al. [6, Example 3.3], Hwang et al. [13, Example 1.2], or
Marks [20, Example 2.2]. If a ring R is of bounded index of nilpotency, then
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R is NI if and only if R is 2-primal by [13, Proposition 1.4]. The upper trian-
gular matrix rings over non-commutative reduced rings are typical examples of
non-commutative 2-primal (NI) rings.

Given a ring R, R[x] denotes the polynomial ring with an indeterminate x
over R. For f(x) ∈ R[x], let Cf(x) denote the set of all coefficients of f(x).
Denote the n by n full matrix ring over R by Matn(R) and the n by n upper
(resp. lower) triangular matrix ring over R by Un(R) (resp. Ln(R)). Use eij
for the matrix with (i, j)-entry 1 and elsewhere 0.

When given a ring R is reduced, Armendariz [3, Lemma 1] proved that
aibj = 0 for all i, j whenever f(x)g(x) = 0, where f(x) =

∑m
i=0 aix

i, g(x) =∑n
j=0 bjx

j are in R[x]. Rege et al. [23] called a ring (not necessarily re-

duced) Armendariz if it satisfies the condition “aibj = 0 for all i, j whenever
(
∑m

i=0 aix
i)(

∑n
j=0 bjx

j) = 0. So reduced rings are Armendariz. If R is an Ar-

mendariz ring, then N(R) is a subring of R by [2, Proposition 2.7 and Theorem
3.2]. But here we prove that directly, applying the method in the proof of [2,
Lemma 2.6].

Proposition 1.1. (1) Let R be an Armendariz ring and am = 0, bm = 0 for
a, b ∈ R. Then aαbβ (1 ≤ α, β ≤ m− 1), a− b ∈ N(R).

(2) If R is an Armendariz ring, then N(R) is a subring of R.

Proof. (1) Let R be an Armendariz ring and a, b ∈ N(R) with am = 0, bm = 0.
Let

f(x) = (1+ax+· · ·+am−1xm−1)(1−ax)(1−bx)(1+bx+b2x2+· · ·+bm−1xm−1).

Since am = 0 = bm, f(x) = 1 and (af(x))m = am = 0, i.e.,

((a+a2x+· · ·+am−1xm−1)(1−ax)(1−bx)(1+bx+b2x2+· · ·+bm−1xm−1))m = 0.

Since R is Armendariz, we get (aαbβ)m = 0 for α, β ∈ {1, . . . ,m− 1}.
Next we claim that (a+ b)2m = 0 by showing that every term is zero. Each

term of (a+b)2m is of the form ci1ci2 · · · ci2m with cij = a or b. Consider g(x) =

(a+ bx)2m. Then every coefficient of g(x) is a sum of c = ci1ci2 · · · ci2m ’s. Note
that c contains at least m occurrences of a or b, say cij1 = cij2 = · · · = cijm = a
with 1 ≤ j1 < j2 < · · · < jm ≤ 2m. Then

(∗) c = ci1 · · · cij1−1acij1+1 · · · cijm−1acijm+1 · · · ci2m .

In the equation (∗), replacing each cij (for ij /∈ {j1, j2, · · · , jm}) by f(x), we
obtain

f(x) · · · f(x)af(x) · · · f(x)af(x) = am = 0.

Since R is Armendariz, we get ci1ci2 · · · ci2m = 0 by taking proper coefficients
of f(x)’s. Use −b in place of b to obtain (a− b)2m = 0.

Therefore aαbβ (1 ≤ α, β ≤ m−1), a−b ∈ N(R), entailing that N(R) forms
a subring of R.

(2) follows from (1) immediately. □
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Commutative (hence NI) rings need not be Armendariz by [23, Example
3.2], and Armendariz rings need not be NI by [2, Example 4.8].

In this note we will study the structure of rings whose nilpotent elements
form subrings. Unifying the concepts of NI rings and Armendariz rings, a
ring R (possibly without identity) will be called an NR ring if N(R) forms
a subring of R. NI rings are clearly NR, and Armendariz rings are NR by
Proposition 1.1. But the converses are both irreversible by [23, Example 3.2]
and [2, Example 4.8].

Considering the definition of NR rings, one may suspect that N(R) ⊆ J(R)
for an NR ring R. However the following example erases the possibility.

Example 1.2. Let S = C{a, b} be the free algebra with non-commuting inde-
terminates a, b over C, where C is the field of complex numbers. Let I be an
ideal of S generated by a2. Set R = S/I. Then R is Armendariz (hence NR)
by [2, Example 4.8] or [7, Example 9.3]. We coincide a, b with their images in
R for simplicity. Notice that N(R) is the subring of R generated by

{αa, βara | α, β ∈ C, r ∈ R}.
In spite of a ∈ N(R), 1 − ba is not invertible in R, entailing a /∈ J(R). This
implies N(R) ⊈ J(R).

Given a ring R and an ideal I of R, we denote {r ∈ R |r+I is regular in R/I}
by C(I).

Lemma 1.3. (1) The class of NR rings is closed under subrings (possibly
without identity).

(2) For any ring A, Matn(A) (n ≥ 2) cannot be NR.
(3) Let R be an NR ring. If C(0) = R\N(R), then R is NI.
(4) The class of NI rings is closed under subrings (possibly without identity).
(5) Let R be a ring and I a nil ideal of R. If R/I is NR, then so is R.
(6) If R is NR, then er − re ∈ N(R) for e2 = e, r ∈ R.

Proof. (1) Let S be a subring of given a ring R. Then N(S) = N(R)∩S. If R
is NR, N(S) forms a subring of S. This implies that S is NR.

(2) Since n ≥ 2, Matn(R) contains two nilpotent elements e12, e21. But
e12 + e21 /∈ N(Matn(R)).

(3) Assume C(0) = R\N(R). Let a ∈ N(R), r ∈ R. By observing that ar, ra
are not regular, ar, ra ∈ N(R) by assumption and so this implies that N(R) is
an ideal of R. Thus R is NI.

(4) By [13, Proposition 2.4(2)].
(5) Let R̄ = R/I. If a + I ∈ N(R̄), then a ∈ N(R) since I is nil, entailing

N(R̄) ⊆ {a + I | a ∈ N(R)}. The converse inclusion is evident, obtaining
N(R̄) = {a+ I | a ∈ N(R)}. Let a, b ∈ N(R). Then a+ I, b+ I ∈ N(R̄), and
since R̄ is NR we get (a− b)+ I, ab+ I ∈ N(R̄). The preceding equality yields
a− b, ab ∈ N(R).

(6) a = er(1−e), b = (1−e)re ∈ N(R) implies er−re = a− b ∈ N(R) when
R is NR. □
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The class of NR rings is not closed under factor rings. For example, let R
be the ring of quaternions with integer coefficients. Then R is a domain and
so NR. However for any odd prime integer q, the ring R/qR is isomorphic to
Mat2(Zq) by the argument in [10, Exercise 2A]. Thus R/qR is not NR.

Note. In Lemma 1.3(3) we consider only the condition “C(0) = R\N(R)”
without the NR condition. Then ar, ra ∈ N(R) for a ∈ N(R), r ∈ R by the
proof of Lemma 1.3(3). Assume that N(R) is of bounded index (of nilpotency)
2. Then for a, b ∈ N(R), (a − b)4 = (ab + ba)2 = ab2a + ba2b = 0 since
ab, ba ∈ N(R). Thus R is NI. Note (a− b)2 = 0 with ab+ ba = 0.

Next assume that N(R) is of bounded index (of nilpotency) ≥ 3. Consider
a sequence (a, b, ba, baab, baababba, . . .) that is generated by a, b ∈ N(R). The
constructing rule is that a term is obtained from all that go before by inter-
changing the a’s and the b’s. Then by [22], there is no product U of a’s and b’s
such that U3 occurs in the sequence. So in this case we do not know whether
the condition “C(0) = R\N(R)” implies the NI (or NR) condition.

Question. Let R be a ring. If N(R) is of bounded index (of nilpotency) ≥ 3
and C(0) = R\N(R), then is R an NI (or NR) ring?

A ring R is called directly finite if ab = 1 implies ba = 1 for a, b ∈ R. NI
rings and Armendariz rings are directly finite by [13, Proposition 2.7] and [18,
Lemma 3.4(3)], respectively. So one may conjecture that NR rings are directly
finite.

Proposition 1.4. NR rings are directly finite.

Proof. We apply the proof of [13, Proposition 2.7]. Let R be an NR ring
and assume on the contrary that R is not directly finite. Then R contains
an infinite set of matrix units, say {e11, e12, e13, . . . , e21, e22, e23, . . .}, by [9,
Proposition 5.5]. Since N(R) forms a subring in R and e12, e21 ∈ N(R), e11 =
e12e21 ∈ N(R), a contradiction. □

By Propositions 1.1 and 1.4, Armendariz rings and NI rings are directly
finite.

A ring is called Abelian if every idempotent is central. Abelian rings are
directly finite by a simple computation. Armendariz rings are Abelian by the
proof of [1, Theorem 6] or [12, Corollary 8]. Armendariz rings are NR by
Proposition 1.1. So it is necessary to check the implications between NR rings
and Abelian rings. But they are independent of each other as follows.

Example 1.5. (1) Let K be a field and S = K{a0, a1, a2, a3} the free algebra
with non-commuting indeterminates a0, a1, a2, a3 over K. Let I be the ideal
of S generated by a0a1, a2a3. Set R = S/I and we coincide a0, a1, a2, a3 with
their images in R for simplicity. It is easily checked that R has only two
idempotents 0 and 1, entailing that R is Abelian. Now consider a1a0 and a3a2.
By the construction of R, a1a0 and a3a2 are nilpotent. But a1a0+a3a2 /∈ N(R).
So R is not NR.
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(2) There exists an NR ring but not Abelian as can be seen by U2(F ) over
a field F .

It is obvious that Köthe’s conjecture (i.e., the sum of two nil left ideals is
nil) holds for NI rings.

Proposition 1.6. Let R be an NR ring. Then the Köthe’s conjecture holds.
Especially N∗(Matn(R)) = Matn(N

∗(R)) and J(R[x]) = N∗(R)[x].

Proof. Let R be an NR ring and I, J be nil left ideals of R. Then a+b ∈ N(R)
for a ∈ I, b ∈ J and so I + J is nil. The other results are obtained by [24,
Theorem 2.6.35]. □

One may suspect that if the Köthe’s conjecture holds, then R is NR. But it’s
not true. For example, let F be a field and let Mat2(F ). Then by [24, Theorem
2.6.35], if the Köthe’s conjecture holds, then N∗(Mat2(F )) = Mat2(N

∗(F )) =
0. But clearly N(Mat2(F )) ̸= 0, and Mat2(F ) is not NR by Lemma 1.3(2).

Denote the center of a ring R by Z(R). If N(R) ⊆ Z(R), then N(R) is an
ideal of R, obtaining that R is NI (hence NR). The following is compared
with this result.

Proposition 1.7. If R is a ring such that N(R) is a commutative subset of
R, then R is NR.

Proof. Let a, b ∈ N(R). Then if N(R) is commutative, a − b ∈ N(R) and
ab ∈ N(R) and so R is NR. □

Consider R = U2(A) over a reduced ring A. Then N(R) = ( 0 A
0 0 ) is a

commutative subset of R since xy = 0 = yx for x, y ∈ N(R). So R is NR
by the Proposition 1.7. Letting I = ( 0 A

0 0 ), I is a nil ideal of R such that
R/I ∼= A⊕A is reduced (hence NR). R is NR also by Lemma 1.3(5).

A ring R is called (von Neumann) regular if for each a ∈ R there exists
x ∈ R such that a = axa.

Proposition 1.8. Given a regular ring R the following conditions are equi-
valent:

(1) R is Armendariz;
(2) R is NI;
(3) R is NR;
(4) R is reduced;
(5) R is 2-primal;
(6) R is Abelian.

Proof. Since R is regular, J(R) = 0 by [9, Corollary 1.2(c)] and so the equiv-
alences of the conditions (2), (4), (5) are obtained. [9, Theorem 3.2] gives the
equivalences of the conditions (4) and (6). (1) implies (6) by [12, Corollary 8].
(4) implies (1) by [3, Lemma 1]. (2) implies (3) trivially. (3) implies (6) by [15,
Theorem 1.8]. □
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A ring R is called π-regular if for each a ∈ R there exist a positive integer
n, depending on a, and b ∈ R such that an = anban. The Jacobson radicals
of π-regular rings are nil, comparing with that regular rings are semiprimitive.
Regular rings are clearly π-regular. However the preceding results need not
hold on π-regular rings. Un(D) (n ≥ 2 and D is a division ring) is π-regular
and NR, but it is neither regular nor reduced.

2. Examples of NR rings

In this section we consider several kinds of ring extensions over NR rings,
and examine them to be NR. We see typical examples of NR rings in the
following.

Theorem 2.1. For a ring R and n ≥ 2, the following conditions are equivalent:
(1) R is an NR ring;
(2) Un(R) is an NR ring;
(3) Ln(R) is an NR ring.

Proof. (1)⇒(2): Suppose that R is NR. By observing that

N(Un(R)) =


N(R) R · · · R
0 N(R) · · · R
...

...
. . .

...
0 0 · · · N(R)

 ,

the ring Un(R) is also NR.
(2)⇒(1): Suppose that Un(R) is an NR ring for any n ≥ 2. Since R is

isomorphic to {aIn ∈ Un(R) | a ∈ R}, R is NR by Lemma 1.3(1) when Un(R)
is NR, where In is the n by n identity matrix.

The proofs of (1)⇒(3) and (3)⇒(1) are similar to those of (1) ⇒ (2) and
(2) ⇒ (1). □

However Matn(A) (n ≥ 2) is not NR by Lemma 1.3(2) for any ring A.

Proposition 2.2. Let R, S be rings and RMS an (R,S)-bimodule. Let E =
(R M
0 S ). Then E is NR if and only if R and S are both NR.

Proof. By observing N(E) =
(

N(R) M
0 N(S)

)
, a similar proof to Theorem 2.1

yields the proposition. □

From now on, Z denotes the ring of integers.

Proposition 2.3. (1) The class of NR rings is closed under direct limits.
(2) A direct sum of NR rings Ri (i ∈ I) is NR if and only if Ri is NR for

all i ∈ I.
(3) Let S be an NR ring (possibly without identity) and attach an identity

to S, obtaining R = S ⊕ Z. Then R is NR.
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Proof. (1) Let D = {Ri, αij} be a direct system of NR rings Ri for i ∈ I
and ring homomorphisms αij : Ri → Rj for each i ≤ j satisfying αij(1) = 1,
where I is a directed partially ordered set. Set R = lim−→Ri the direct limit

of D with ιi : Ri → R and ιjαij = ιi. Let a, b ∈ R. Then a = ιi(ai),
b = ιj(bj) for some i, j ∈ I and there is k ∈ I such that i ≤ k, j ≤ k. Define
a + b = ιk(αik(ai) + αjk(bj)) and ab = ιk(αik(ai)αjk(bj)), where αik(ai) and
αjk(bj) are in Rk. Then R forms a ring with 0 = ιi(0) and 1 = ιi(1).

Next let a, b ∈ N(R). There is k ∈ I such that a, b ∈ N(Rk) via ιi’s and
αij ’s. Since Rk is NR, a − b ∈ N(Rk) and ab ∈ N(Rk), concluding R being
NR.

(2) Let R =
∑

i∈I Ri and a, b ∈ N(R) with a = (ai) and b = (bi). Here we
can assume a, b are both nonzero. Put J = {j ∈ I | aj ̸= 0 or bj ̸= 0}. Then
clearly J is finite. If all Ri’s are NR, then aj − bj , ajbj ∈ N(Rj) for all j ∈ J .
Thus a− b, ab ∈ N(R) since J is finite, obtaining that R is NR.

Conversely let R be NR and assume on the contrary that Ri0 is not NR for
some i0 ∈ I. Then for some x, y ∈ N(Ri0), x − y /∈ N(Ri0) or xy /∈ N(Ri0).
Taking a = (ai), b = (bi) ∈ R such that x = ai0 , y = bi0 and ak = 0, bk = 0
for all k ∈ I\{io}. Then since a, b ∈ N(R) and R is NR, a − b ∈ N(R) and
ab ∈ N(R) and so ai0 − bi0 ∈ N(Ri0) and ai0bi0 ∈ N(Ri0), a contradiction.

(3) Since S is a subring of R and N(S)⊕ 0 = N(R), R is NR. □

Letting I = {M ∈ Un(R) | the diagonal entries of M are all zero} in Theo-
rem 2.1, I is a nil ideal of Un(R) such that Un(R)/I is isomorphic to the direct
sum of n-copies of R. So if R is NR, then Un(R)/I in NR by Proposition
2.3(2). Thus Lemma 1.3(5) implies that Un(R) is NR.

By Proposition 2.3(2), one may suspect that the direct product of NR rings
is NR. However the direct product of NR rings need not be NR as follows.

Example 2.4. The construction and computation are according to Huh et
al. [19, Examples 1.6], [13, Example 2.5], and Marks [21, Remark, p. 508].
Let K be a field and define Dn = K{xn}, a free algebra generated by xn,
with a relation xn+2

n = 0 for each nonnegative integer n. Then clearly Dn
∼=

K[x]/(xn+2), where (xn+2) is the ideal of K[x] generated by xn+2. Next let

Rn =
(

Dn xnDn

xnDn Dn

)
be a subring of the 2 by 2 matrix ring over Dn. Then

every Rn is 2-primal (hence NR) by the computation in [19, Example 1.6]. Set
R =

∏∞
n=0 Rn. However the sum of two nilpotent elements

(
0 xn
0 0

)
and

(
0 0
xn 0

)
is not nilpotent, entailing that R is not NR.

Proposition 2.5. Let e be a central idempotent of a ring R. Then the following
statements are equivalent:

(1) R is NR;
(2) eR and (1− e)R are both NR.

Proof. (1)⇒(2) comes from Lemma 1.3(1) since eR and (1− e)R are subrings
of R.
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(2)⇒(1): Suppose that eR and (1 − e)R are both NR. Then by observing
N(R) = N(eR)⊕N((1− e)R), Proposition 2.3(2) implies that R is NR. □

The polynomial rings need not preserve the NR condition as follows.

Example 2.6. The following construction is due to Smoktunowicz [25]. Let K
be a countable field and Ā the algebra of polynomials with zero constant terms
in non-commuting indeterminates x, y, z over K. Then Ā can be enumerated,
say Ā = {f1, f2, . . .}. By the argument in the proof of [25, Theorem 12], there
are natural numbers m1,m2, . . . such that (i) m1 > 108, mi+1 > mi2

i+101 for
i ≥ 1, (ii) each mi divides mi+1 and (iii) mi > 32 deg(fi)(deg(fi))

2402 for i ≥ 1.

Let I be the ideal of Ā generated by {f10mi+1

i | i = 1, 2, . . .} and S = Ā/I.
Then S is nil. Attach an identity to S, obtaining R = S ⊕ Z. N(R) = S ⊕ 0
implies that R is NI (hence NR).

Next assume that the polynomial ring over an NR ring is also NR. Then
the polynomial ring R[X,Y ] in two commuting indeterminates X,Y over R is
also NR. However x̄+ ȳX + z̄Y is not nilpotent by the proof of [25, Theorem
12], in spite of x̄, ȳX, z̄Y ∈ N(R[X,Y ]). This is contrary to that R[X,Y ] is
NR.

Suppose that an NI ring R is of bounded index of nilpotency. Then R is
2-primal by [13, Proposition 1.4] and moreover R[x] is 2-primal (hence NR) by
[5, Proposition 2.6].

Next we consider the NR condition of Ore extensions. For a ring R, a ring
endomorphism σ : R → R and a σ-derivation δ : R → R, the Ore extension
R[x;σ, δ] of R is the ring obtained by giving R[x] the multiplication xr =
σ(r)x+ δ(r) for all r ∈ R. If δ = 0, we write R[x;σ] for R[x;σ, 0] and is called
an Ore extension of endomorphism type (also called a skew polynomial ring).
While if σ = 1, we write R[x; δ] for R[x; 1, δ] and is called an Ore extension of
derivation type (also called a differential polynomial ring). Use Zn to denote
the ring of integers modulo n.

Example 2.7. (1) There exists an NR ring over which the skew polynomial
ring need not be NR. For a domain D let R = D ⊕ D, then R is reduced
(hence NR). Consider the automorphism σ of R defined by σ(s, t) = (t, s). Let
R[x;σ] be the skew polynomial ring over R by σ. Consider (1, 0)x and (0, 1)x.
Then ((1, 0)x(1, 0)x) = 0 and ((0, 1)x(0, 1)x) = 0, whence (1, 0)x, (1, 0)x ∈
N(R[x;σ]). But (1, 0)x + (0, 1)x = (1, 1)x is not nilpotent, entailing that
R[x;σ] is not NR.

(2) There exists an NR ring over which the differential polynomial ring need
not be NR. We use the ring and argument in [4, Example 11]. Let Z2[t] be
the polynomial ring with an indeterminate t over Z2. Then R = Z2[t]/(t

2)
is commutative (hence NR), where (t2) is the ideal of Z2[t] generated by t2.
Define a derivation δ on R by δ(t+(t2)) = 1+(t2). Then R[x; δ] ∼= Mat2(Z2[y

2])
which is not NR by Lemma 1.3(2).
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In the following we see two cases in which R[x;σ, δ] can be NR.
Let σ be an endomorphism of a ring R. Due to Krempa [16], σ is called

rigid if rσ(r) = 0 implies r = 0 for r ∈ R. It is easily checked that a rigid
endomorphism is injective. A ring R is called σ-rigid if there exists a rigid
endomorphism σ of R. Hong et al. [11, Proposition 5] proved that a ring R is
σ-rigid if and only if R[x;σ, δ] is a reduced ring and σ is a monomorphism of
R. In Example 2.7(1), σ is not rigid since (1, 0)σ(1, 0) = 0.

Let R be a local ring with an endomorphism σ and a σ-derivation δ, and
suppose that the maximal ideal M of R is nilpotent. In this situation, Mark
[20, Theorem 3.4] proved that R[x;σ, δ] is 2-primal if δ(M) ⊆ M . In Example
2.7(2), R is a local ring with the maximal ideal M = Z2t+(t2), but δ(M) ⊈ M
since δ(M) contains 1 + (t2).

Next we study the NR condition of classical quotient rings over NR rings.
A ring R is called right Ore if given a, b ∈ R with b ∈ C(0) there exist a1, b1 ∈ R
with b1 ∈ C(0) such that ab1 = ba1. Left Ore rings can be defined by symmetry.
It is well-known that R is a right Ore ring if and only if the classical right
quotient ring of R exists. If both right and left quotient rings exist, then they
are equal. Let F be a field and R the free algebra in two indeterminates over
F . Then R is a domain but cannot be right (left) Ore. It is also well-known
that R is a right Ore domain if and only if the classical right quotient ring of R
is a division ring. A subset I of a ring R is called right (resp. left) T-nilpotent
provided that for every sequence a1, a2, . . . in I there is a positive integer n
such that an · · · a2a1 = 0 (resp. a1a2 · · · an = 0). Nilpotent subsets of a ring
are obviously both right and left T-nilpotent but the converse does not hold
in general, and that right or left T-nilpotent subsets are clearly nil but nil
ideals need not be right (or left) T-nilpotent. The T-nilpotence is not left-right
symmetric by [24, Example 2.7.38].

Theorem 2.8. Let R be a right Ore ring and Q the classical right quotient
ring of R. Suppose that N(R) is left T-nilpotent. Then the following conditions
are equivalent:

(1) Q is an NI local ring with N(Q) =J(Q)= {ab−1 ∈ Q |a ∈ N(R) and b ∈
C(0)};

(2) R is NR and C(0) = C(N∗(R)) = R\N(R).

Proof. (1)⇒(2): We will apply the proof of [8, Proposition 2.1(1)]. Suppose
that the condition (1) holds. Then R is NI (hence NR) by Lemma 1.3(4)
and Q/N(Q) is a division ring. So if a, b ∈ R\N(R), then they are invertible
in Q/N(Q) and so ab /∈ N(Q). Thus ab /∈ N(R) since N(R) ⊆ N(Q). This
yields that R/N(R) is a domain, and hence C(N(R)) = R\N(R) and C(0) ⊆
C(N(R)). Conversely let u ∈ C(N(R)). Then u is invertible inQ sinceQ/N(Q)
is a division ring with N(Q) = J(Q) = {ab−1 ∈ Q | a ∈ N(R) and b ∈ C(0)},
entailing u ∈ C(0). This yields C(N(R)) ⊆ C(0).

(2)⇒(1): Assume that R is NR and C(0) = R\N(R). Then R is NI by
Lemma 1.3(3) and moreover R/N∗(R) is a domain. Next we will apply the
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proof of [8, Proposition 2.1(1)]. Let ab−1 ∈ N(Q). Then a is not regular,
forcing a ∈ N(R) by the assumption. Conversely let ab−1 ∈ Q with a ∈ N(R).
Then since C(0) = R\N(R) we have

(ab−1)2 = ac1d
−1
1 , (ab−1)3 = ac1c2d

−1
2 , . . . , (ab−1)n+1 = ac1 · · · cnd−1

n

with ci’s in N(R) and di’s in C(0) for i = 1, . . . , n. But N(R) is left T-
nilpotent by hypothesis and so (ab−1)k = ac1 · · · ck−1d

−1
k−1 = 0 for some k.

Whence ab−1 ∈ N(Q) when a ∈ N(R), entailing

N(Q) = {ab−1 ∈ Q | a ∈ N(R) and b ∈ C(0)}.

From C(0) = R\N(R), N(Q) is an ideal of Q and so Q is NI. Consequently
Q/N(Q) is a division ring since every element inQ\N(Q) is invertible. SoQ is a
local ring such that N(Q) = J(Q) = {ab−1 ∈ Q | a ∈ N(R) and b ∈ C(0)}. □

Considering Theorem 2.8 and [8, Proposition 2.1], one may conjecture N(R)
= N∗(R) under the equivalences of Theorem 2.8. However the following pro-
vides a counterexample.

Example 2.9. Let S = Z2[x] and consider

Dn(S) = {M ∈ Un(S) | the diagonal entries of M are equal},

a subring of Un(S) and define a map σ : Dn(S) → Dn+1(S) by A 7→ (A 0
0 A ).

Then Dn(S) can be considered as a subring of Dn+1(S) via σ (i.e., A = σ(A)
for A ∈ Dn(S)). Set R be the direct limit of the direct system (Dn(S), σij) with
σij = σj−i. Then R is semiprime (i.e., N∗(R) = 0) by [14, Theorem 2.2(2)] but
N∗(R) ̸= 0 (hence not 2-primal). Moreover R is NI by [13, Example 1.2] and
Lemma 1.3(4). Note

N(R) = {M ∈ R | the diagonal entries of M are zero} ̸= 0

and so

C(0) = C(N(R)) = R\N(R)

= {M ∈ R | the diagonal entries of M are nonzero}.

By [17, Theorem 1.3 and Proposition 1.9], every Dn(S) is both left and right
Ore; hence R is also left and right Ore by the construction. It is easily checked
that the classical quotient ring Q of R is the direct limit of the direct system
(Dn(Z2(x)), σij) with σij = σj−i, where Z2(x) is the quotient field of Z2[x].
Note that Q is a π-regular ring with

N(Q) = J(Q) = {N ∈ Q | the diagonal entries of N are zero} ≠ 0.

This result yields that Q is NI and local with

N(Q) = J(Q) = {ab−1 ∈ Q | a ∈ N(R) and b ∈ C(0)}.

Notice that N(R) is left T-nilpotent. Indeed, consider a sequence a1, a2, . . . in
N(R). We can assume that every ai = (ast)i is nonzero. Let j be largest such
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that the j-th row of a1 contains a nonzero entry. Then since s < t in each ai,
we get aj+1aj · · · a2a1 = 0.

If given a ring R is π-regular, then every regular element is invertible and
so R is itself its right (left) quotient ring. Thus letting S be any division
ring in Example 2.9, the direct limit R and its classical right (left) quotient
ring coincide since R is π-regular. This provides another counterexample since
N(R) ̸= 0 and N∗(R) = 0 by a similar computation.

In Theorem 2.8, each equality in C(0) = C(N∗(R)) = R\N(R) is necessary
as the following examples show.

Example 2.10. The argument is almost all due to [8, Example 2.2]. (1) (The
case of C(0) = C(N∗(R)) ⫋ R\N(R)) We refer the argument in [8, Example
2.2(1)]. Let R = U2(Z). Then clearly N(R) = N∗(R) = ( 0 Z

0 0 ); and the classical
right quotient ring Q of R is U2(Q), where Q is the field of rational numbers.
Q is NI with N(Q) = J(Q) = {ab−1 ∈ Q | a ∈ N(R) and b ∈ C(0)} =

(
0 Q
0 0

)
.

However Q is not local since Q/J(Q) ∼= Q ⊕ Q, and C(0) = C(N(R)) =
{( a b

0 c ) ∈ R | a ̸= 0, c ̸= 0} ⫋ R\N(R) = {( a b
0 c ) ∈ R | a ̸= 0 or c ̸= 0}.

(2) (The case of C(0) ⫋ C(N∗(R)) = R\N(R)) We refer the argument
in [8, Example 2.2(2)]. Let R = {( n a

0 n ) | n ∈ Z and a ∈ Z/2Z}. Then R is
commutative, C(0) = {(m a

0 m ) ∈ R | m is odd}, and C(N(R)) = R\N(R) =

{( s a
0 s ) ∈ R | s ̸= 0} because N(R) =

(
0 Z/2Z
0 0

)
and R/N(R) ∼= Z. The classical

right quotient ring Q of R is{(
q a
0 q

)
| q ∈ Z(2), a ∈ Z2

}
,

where Z(2) denotes the localization of Z at the prime ideal 2Z. Then Q is a

commutative local ring with N(Q) = {ab−1 ∈ Q | a ∈ N(R) and b ∈ C(0)} =(
0 Z/2Z
0 0

)
⫋ J(Q) =

{( q a
0 q

)
∈ Q | q ∈ J(Z(2))

}
. Note that Q/N(Q) ∼= Z(2) and

Q/J(Q) ∼= Z/2Z.
(3) (The case of C(0) ⫋ C(N∗(R)) ⫋ R\N(R)). We refer the argument in [8,

Example 2.2(3)]. We use the ring and the argument in [5, Example 5.10]. Let

R =
(

Z Z/2Z
0 Z/2Z

)
. Then R is NI with N(R) =

(
0 Z/2Z
0 0

)
, and each regular element

in R is of the form ( n a
0 1̄ ) with n odd and a ∈ Z/2Z. So the classical right

quotient ring Q of R is
(

Z(2) Z/2Z
0 Z/2Z

)
. Q is clearly NI. However Q is not local

since Q/J(Q) ∼= Z/2Z ⊕ Z/2Z, and N(Q) = {ab−1 ∈ Q | a ∈ N(R) and b ∈
C(0)} = ( 0 F

0 0 ) ⫋ J(Q) =
(

J(Z(2)) Z/2Z
0 0

)
. Note that every element of R with

(1, 1)-entry even is not regular, and this yields

C(0) = {(m a
0 b ) ∈ R | m is odd and b = 1̄}

⫋ C(N(R)) =
{(

k a
0 b

)
∈ R | k ̸= 0 and b ̸= 0

}
⫋ R\N(R) =

{(
h a
0 b

)
∈ R | h ̸= 0 or b ̸= 0

}
.
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