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NEW BOUNDS FOR THE OSTROWSKI-LIKE
TYPE INEQUALITIES

Vu NHAT Huy AND Qubc-ANH NGO

ABSTRACT. We improve some inequalities of Ostrowski-like type and fur-
ther generalize them.

1. Introduction

In 1938, Ostrowski [8] proved the following interesting integral inequality
which has received considerable attention from many researchers.

Theorem 1 (See [8]). Let f : [a,b] — R be continuous on [a,b] and differen-
tiable on (a,b) whose derivative function f' : (a,b) — R is bounded on (a,b),
-6y [ loo = $UPre(asy |/ (8)] < 0. Then

z — atb)?
(1) S (le‘f'((l)_i)g)) (b—a)llf'lloo

b
f@) -5 [ s

for all x € [a,b].

This inequality gives an upper bound for the approximation of the integral
average ;— fab f(t)dt by the value f(z) at point « € [a,b]. The first generaliza-
tion of Ostrowski inequality was given by G. V. Milovanovi¢ and J. E. Pecari¢
in [7]. However, note that estimate (1) can be applied only if f’ is bounded. In
the first part of this paper, we will improve (1) by assuming f’ € LP(a,b) for
some 1 < p < co. More precisely, we obtain the following theorem.

Theorem 2. Assume that 1 < p. Let I C R be an open interval such that
[a,b) C I and let f : I — R be a differentiable function such that f’ € L?(a,b).

Then we have
1 b
el IIGL
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for all x € [a,b] where

1
1 1 (b—a\""\" a+b|a
Ale,q) = b—a<q+1< 2 > ) T

1 1 _

Remark 1. limg_, o A(z,q) = 2 for each z € [a, b].

Example 1. Let us consider the integral

/01 {/sin (£2)dt.

Then we have
2t cos (t2)

3{/sin? (12)

such that f’(t) — oo as t — 0. On the other hand, we have

t? cos (tg)
sin (¢2)

ft)=</sin(#2) and f'(t) =

[IA

1
’ 2 <é
/O @) dt = g (DX,

/1 dt 16
o sin(t2) = 9’

ie., ||f'l2 < 4. It follows that

{/sin (z2) —/0 V/sin (tz)dt’ < % (\/1271 +/x— ;)

for all z € [0,1].

In recent years, a number of authors have written about generalizations of
Ostrowski inequality. For example, this topic is considered in [1, 3, 4, 6, 11, 5].
In this way, some new types of inequalities are formed, such as inequalities of
Ostrowski-Griiss type, inequalities of Ostrowski-Chebyshev type, etc. The first
inequality of Ostrowski-Griiss type was given by Dragomir and Wang in [4].
It was generalized and improved by Mati¢, Pecari¢, and Ujevi¢ in [6]. Cheng
gave a sharp version of the mentioned inequality in [3]. Recently in [11], Ujevié
proved the following result which gives much better results than estimations

based on [3].

Theorem 3 (See [11, Theorem 4]). Let f : I — R, where I C R is an interval,

[e]
be a twice continuously differentiable mapping in the interior [ of I with " €

L?(a,b) and let a,b € ;, a < b. Then we have

g (b_a‘)

0t b\ £ ()~ f(a)
3) - ) L

f(x)—b_la/abf(t)dt_<x 2 b—a

for all xz € [a,b].
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If we assume f is such that f” is of class L? for some 1 < p < oo, then we
obtain:

Theorem 4. Let f : I — R, where I C R is an interval, be a twice continuously

differentiable mapping in the intem‘or; of I with " € LP(a,b), 1 < p < oo, we

have b_a/f . ( a+b>f(bi:£(a)

(4)
for all x € [a,b] where

13 (—a)! g 1 (b—a)**™! z
Bla) = 2< g+1 ) +2(b—a)< 2q+1

1 1 _

Q?

= B,

Remark 2. limy_, 1o B(q) = 2(b—a).

2. Proofs

Before proving our main theorem, we need an essential lemma below. It is
well-known in the literature as Taylor’s formula or Taylor’s theorem with the
integral remainder.

Lemma 5 (See [2]). Let f : [a,b] — R and let v be a positive integer. If f
is such that f"=Y is absolutely continuous on [a,b], xo € (a,b), then for all
€ (a,b) we have

! (I) =T (f’ IQ,I) + Rry (fv xo,ﬂf),

where Ty._1 (f, xo,-) is a Taylor’s polynomial of degree r — 1, that is,

®) (z0) (z — x0)"
To v (f, 20, 2) Zf 0) 0)

and the remainder can be given by

(5) Ry (o) = [

x

()" f()

d
) (r—1)!
By a simple calculation, the remainder in (5) can be rewritten as
T (p—mo — )" fO) (wg + ¢)
R,_ = dt
T 1(f,$07l') /; (7"—1)‘
which helps us to deduce a similar representation of f as following

Uk u u— r—1
(6) (z +u) Z o —f® (g /O ((r—t)l)' £ (x4 t) dt.

t.
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Proof of Theorem 2. Denote

F(x)= / f(t)dt.
By Fundamental Theorem of Calculus
I(f) =F(b)— F(a).
Applying Lemma 5 gives

By changing t = a+ b — z, we get
atb

b 2
/M (b—t)f’(t)dt:/ (t—a)f (a+b—t)dt

Pl a

which helps us to deduce that
a+b

b =
/ f@)dt = (b—a)f <‘“2Lb) +/ (t—a) (f (a+b—1)— f(2)) dt.
On the other hand,

Then

b
fla)- s [ s

a+b
2

- /7 fBdt = b% (t—a)(f' (a+b—1)— f(1) dt.
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Next we consider the case 1 < p < oo. We first have the following estimates
atb
2

(t—a) (f (a+b—1) = f'(t))dt

a

a+b

[ -

a+b
2

/ (t—a)f (a+b—1t)dt| +

[IA

a+b

(/a2|f’(a—|—b—t)|pdt>;</aa2+b|t—a|th>q
+< |pdt> ( t—a|th>;
- (qil(bQ) )qnf'np.

A

Clearly,
1 1
roa <[ rwra ([
atb atb atb
2 2 2
1 1
b P xT q
< / F O dt 19dt
a atb
2
1
_a+ble
5 .
Hence,

If p=1, then
a+b
2

t—a)(f'(a+b—1t)—f(t)dt

a+b

/2 (IF (a+b— )] + £/ @) dt

a

b—a
2

[IA
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‘ [, roa

which helps us to claim that

\ /fdt

Corollary 1. If we put x = %b, then under the assumptions of Theorem 1

and 1 < p < oo, we have
1
1 (b—a\"\"
< (qﬂ( ) ) sl

a+b
1(55) -5 o
Note that
L1 —a\"™\T 1/ 1\t b-a)t
b—a q+1< 2 ) _2<q+1> ( 2 ) '
Proof of Theorem 4. Clearly, by Lemma 5 one has
1 b
o [ S0t = () - Fla)
_ 1 / (b_a)2 " (b t) "
_b—a<(b_a)F (a)+ 5 F (a)+/a 5 —FF ()dt)

—a b —1'2
—r@+ 1 @ [ e

and

=11,

3

O

Similarly,

and

Therefore,

/f dt_( a+b>f(bl)):£(a)

b 2 o atb b
_ /(bf:r)f”(x)dtfbia/ @f”(t)dtf = /(bt)f”(t)dt‘.
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If 1 < p < 00, then by the Holder inequality, one has

b % b — q+1 %
gf”np( / <b—t>th> =<(q+>1) 11,

/ Cb— 0

and
1 /b (b—t)2f//(t)dt <;||f//” /b(b—t)zth '
b—all, 2 ~ 2(b—a) P\ Ja
_ 1 (b*a)Qq—H % "
_2(b—a)< 2¢+1 171l
and
_atb b b
S [eo-nrea <z [ e-o e
1 (b_a)q+1 % "
<2<Q+1> I f Hp'
Thus,
1 b a+b\ f) - f(a)
|f(x)—b_a/af(t)dt—(z— ) LB
<

s(6-a™\* 1 (-a®\|, .
[2( g+ 1 ) +2(ba)< 2¢+1 )]'f -

If 1 = p, then again by the Holder inequality, one has

b b
/ (b—1) f"()dt] < (b a) / @] de = (b - a) ],

and

b(p_ )2 b—a)? [? bh—
/a O pripar] < 1020 / @) dt = ==L

2 2

T — a+b

atb b
= [ -0

a

=

b
<3| o-nswa < se-alrl,.

Hence,

=20 -a)lf"l;-

f(w)—bia/abf(t)dt— <x_“;b> f<bl)):£<a)
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Therefore,
’ /f dt_( a+b>f(bl)):£(a)
p 3<(b—a)"+1>“ L1 ((b—a)qu)‘l‘ L
|2 q+1 2(b—a) 2g+1 P 0
Corollary 2. If we put x = %rb, then under the assumptions of Theorem 3

and 1 £ p < oo, we have

(CR=INE

< § (b_a)‘ﬁ‘l ! + 1 (b_a)2q+1 ! ||f/l||
= 12\ ¢+1 2b—a)\  2q¢+1 P

3. Applications in numerical integral

Let I' = {xg =a <21 < -+ <z, = b} be a given subdivision of the interval
[a, b] such that h = 2,41 —x; = b*Ta. Then we obtain the following theorem by
using Corollary 1.

Theorem 6. Under the assumptions of Theorem 2 and 1 < p < oo, we have

1, (i1 + 1/ 1 \7/b—a\7, .,
s () - [l < () (55)

Proof. We have
1/ 1 \¢ b
Sol—=/ HfH Jio1,i]
2\qg+1

() - [ s

where 1
z; P
Il |py i1 ,24] = (/ |f’(t)|pdt> .
Ti—1
Then,
I, (@i + 1y 10
- - t)dt
n;f( - ) = | 1
1/ 1 \* .
< | —
= 2n<q+1> < > ;' plzio1,2i)
Put

i = / P

i—
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Then

Sy
lIA
3
—
|
s =
=

Qi

v

n
Z Hf/Hp,[:ni,l,a:i] =
i=1

Therefore,

L 1
Yoai| =alTE |,
i=1

i=1

AR

~ i1+ x; 1 b
Sor (T - o [
=1

1
1 1 b—a q 1—1 /
= (1) (552) i,
i 1

bboavh
(1) (552 e, _

If we use Corollary 2, we then obtain the following theorem whose proof will
be omitted.

Q=

A

Theorem 7. Under the assumptions of Theorem 4 and 1 < p < oo, we have

1 & i1+ x; 1 b
n;f( : )—ba/a Pty

1w 1 (eaty
n? |2 q+1 2(b—a) 2¢+1

[IA

[N
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