
Bull. Korean Math. Soc. 48 (2011), No. 1, pp. 35–50

DOI 10.4134/BKMS.2011.48.1.035

STABLE INDEX PAIRS FOR DISPERSIVE

DYNAMICAL SYSTEMS

Yoon Hoe Goo and Jong-Suh Park

Abstract. We construct the index pairs of an isolated neighborhood for
a dispersive dynamical system and investigate the existence of an index
pair which is stable under small perturbations of the dispersive dynamical

systems.

1. Introduction

The Conley index theory, the origin of which goes back to the famous
Wazewski Retract Theorem [9], has become an important tool in the quali-
tative study of differential equations. The theory provides cohomological or
homotopic invariants of isolated invariant sets of flows and yields existence
results in differential equation. The foundations of the theory, in a locally
compact setting, were established by R. Churchil [1], J. Montgomery [11], C.
Conley [2], and by H. Kurland [9]. K. Rybakowski [13] extended the theory to
the case of non-locally compact spaces. The theory is now designated as the
Conley index theory because of the significant role played by C. Conley in its
development.

There is a formal similarity between the above indices of the isolated invari-
ant set and the fixed point index [4] of a continuous map. Recently the fixed
point index has been extended to the case of a multi-valued admissible map
[8]. Thus there is a question if a similar generalization is also possible in case
of a general dynamical system.

Such a generalization would be useful in direct applications to differential
equation without uniqueness as well as in situations where the classical Conley
index is used in course of a proof but extra assumptions or extra verifications
are needed to ensure uniqueness [10].
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E. Dancer mentioned in [3] that an approximation technique could provide a
partial extension of the Conley theory to the case of general dynamical systems
defined by differential equations without uniqueness.

In this paper we construct the index pairs of an isolated invariant set of a
dispersive dynamical system on a metric space. Such a topological approach,
contrary to the approximation technique, seems to be closer in spirit to the
original Conley index. Additionally it allows applications to differential inclu-
sions.

Our work is organized as follows. In Section 2, we study some properties
of I-solution for dispersive dynamical systems. In the following section we
investigate the existence and properties of index pairs. In the last section
we provide that the index pairs are stable under small perturbations of the
dispersive dynamical system.

2. General dynamical systems

Let X be a topological space. We will denote by 2X the set of all nonempty
compact subsets of X.

Definition 2.1. Let (X, d) and (Y, ρ) be metric spaces and let f : X → 2Y .
The map f is said to be (1) upper semicontinuous (usc) at x ∈ X if for each
ε > 0, there exists δ > 0 such that

d(x, z) < δ implies f(z) ⊆ Bρ(f(x), ε),

(2) lower semicontinuous (lsc) at x if for each ε > 0, there exists δ > 0 such
that

d(x, z) < δ implies f(x) ⊆ Bρ(f(z), ε).

The map f is said to be continuous at x if f is upper and lower semicontinuous
at x.

It is easy to prove the following proposition.

Proposition 2.2. Let (X, d) and (Y, ρ) be metric spaces and let f : X → 2Y .
Then

(1) f is usc at x ∈ X if and only if for any open neighborhood U of f(x),
there exists an open neighborhood V of x such that f(z) ⊂ U for all z ∈ X.

(2) f is lsc at x ∈ X if and only if for any open set U with f(x) ∩ U ̸= ∅,
there exists an open neighborhood V of x such that f(z) ∩ U ̸= ∅ for all z ∈ V.

Proposition 2.3. Let (X, d) and (Y, ρ) be metric spaces and let f : X → 2Y .
(1) If f is usc at x ∈ X, then xn → x, yn ∈ f(xn) and yn → y implies

y ∈ f(x).
(2) If X is compact, then the inverse of (1) holds.

Proof. (1) Suppose f is usc at x ∈ X and let ε > 0. Then there exists δ > 0
such that d(x, z) < δ implies f(z) ⊂ Bρ(f(x),

ε
2 ). Also, there exists a positive

integer n such that d(x, xn) < δ and d(y, yn) <
ε
2 . Therefore we have yn ∈
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f(xn) ⊂ Bρ(f(x),
ε
2 ) and so there exists z ∈ f(x) such that ρ(yn, z) <

ε
2 . Since

ρ(y, z) ≤ ρ(y, yn) + ρ(yn, z) <
ε
2 +

ε
2 = ε, we have z ∈ Bρ(y, ε)∩ f(x). Hence it

follows that y ∈ f(x) = f(x).
(2) Suppose f is not usc at x ∈ X. Then there exists ε > 0 such that for any

δ > 0, there exists z ∈ Bd(x, δ) such that f(z) ⊈ Bρ(f(x), ε). Therefore for any
positive integer n, there exists xn ∈ Bd(x,

1
n ) such that f(xn) ⊈ Bρ(f(x), ε).

Also there exists yn ∈ f(xn) − Bρ(f(x), ε). Since X is compact, (yn) has a
convergent subsequence. Let yn → y. Since xn → x, we have y ∈ f(x). But
since ρ(yn, f(x)) ≥ ε for all n, we have ρ(y, f(x)) ≥ ε. This is a contradiction.
Hence f is usc at x ∈ X. This completes the proof. □

Continuing on in the same vein, we state another condition that is equivalent
to upper semicontinuity.

Proposition 2.4. Let (X, d) and (Y, ρ) be metric spaces and let f : X → 2Y .
Then f is usc if and only if for any open set U ⊂ Y, f−1(U) ≡ {x ∈ X | f(x) ⊂
U} is open in X.

Proof. Suppose f is usc. Then for any x ∈ f−1(U), we have f(x) ⊂ U. By
Proposition 2.2, there exists a neighborhood V of x such that z ∈ V implies
f(z) ⊂ U. Therefore we have V ⊂ f−1(U) and so f−1(U) is open in X.

Conversely, let x ∈ X and let U be any open neighborhood of f(x). Then
V ≡ f−1(U) is a neighborhood of x and for any z ∈ V we have f(z) ⊂ U. By
Proposition 2.2, f is usc at x. Hence f is usc and so the proof is complete. □

Proposition 2.5. Let f : X → 2Y be usc. If K is a compact subset of X, then
f(K) is a compact subset of Y.

Proof. Let {Uα | α ∈ A} be an open cover of f(K). For each x ∈ K, since f(x) is
compact, there exists a finite subset Ax of A such that f(x) ⊂

∪
α∈Ax

Uα. Since
f is usc, there exists a neighborhood Vx of x such that f(Vx) ⊂

∪
α∈Ax

Uα. Since

K is compact, there are finitely many x1, . . . , xn ∈ K such that K ⊂
∪n

i=1 Vxi .
Then

f(K) ⊂ f(

n∪
i=1

Vxi) =

n∪
i=1

f(Vxi) ⊂
n∪

i=1

∪
α∈Axi

Uα.

Thus f(K) is compact. □

We denote the set of all real numbers, nonnegative real numbers, and non-
positive real numbers by R,R+ and R−, respectively.

Definition 2.6. An usc mapping f : X × R → 2X is called a dispersive
dynamical system if the following conditions are satisfied:

(1) For all x ∈ X, f(x, 0) = {x};
(2) For all s, t ∈ R with st ≥ 0 and all x ∈ X, f(f(x, s), t) = f(x, s+ t);
(3) For all x, y ∈ X, if y ∈ f(x, t), then x ∈ f(y,−t).
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The sets f({x} × R), f({x} × R+), f({x} × R−) will be called the trajec-
tory, the positive trajectory and the negative trajectory of x and denoted by
f(x), f+(x), f−(x), respectively.

In the following argument, all of the notations and results are stated with
respect to a given dispersive dynamical system f defined on a metric space X.

Definition 2.7. Let I ⊂ R be an interval. By a I-solution of f in N ⊂ X we
mean a continuous map σ : I → N such that

σ(t) ∈ f(σ(s), t− s) for all s, t ∈ I.

We will say that the solution σ originates at x ∈ X if 0 ∈ I and σ(0) = x.
A [0, t]-solution ([t, 0]-solution in case t ≤ 0) σ of f in N will be called a t-
connection from x to y provided σ(0) = x, σ(t) = y. The set of all I-solution
of f in N and the set of all I-solutions originating at x will be denoted by
solN (I), solN (I, x), respectively. We will also write connN (t, x, y) for the set
of all t-connections from x to y in N. In case N = X the subscripts N in solN
and connN will be omitted.

We have the following basic facts [3, 4, 6, 7, 8, 9, 10].

Proposition 2.8. If σ1 and σ2 are solutions of f on [a, b] and [b, c], respec-
tively, with σ1(b) = σ2(b), then the concatenation σ of σ1 and σ2 defined by

σ(t) =

{
σ1(t), t ∈ [a, b]
σ2(t), t ∈ [b, c]

is a solution of f on [a, c].

Proposition 2.9. Let y ∈ f(x, t1 − t0), where t0 ≤ t1. Then there exists a
solution σ : [t0, t1] → X such that σ(t0) = x, σ(t1) = y.

Proposition 2.10 (Barbashin’s Theorem). Let (σn) be a sequence of solutions
σn : [t0, t1] → X and let σn(t0) → x. Then there exist a subsequence (σni) of
(σn) and a solution τ : [t0, t1] → X such that (σni) converges uniformly to τ
on [t0, t1].

We shall investigative some properties of I-solution for a dispersive dynam-
ical system f which will be used in the next section.

Proposition 2.11. If I, J are compact intervals such that I ⊂ J, then for
every I-solution σ there exists a J-solution τ being an extension of σ.

Proof. Let I = [b, c] and J = [a, d]. Put x0 = σ(b) and x1 = σ(c). Choose
y0 ∈ f(x0, b− a) and y1 ∈ f(x1, d− c). Since x0 ∈ f(y0, b− a), by Proposition
2.9, there exist solutions γ1 : [0, b − a] → X and γ2 : [0, d − c] → X such that
γ1(0) = y0, γ1(b− a) = x0, γ2(0) = x1, γ2(d− c) = y1. Define τ : [a, d] → X by

τ(t) =

 γ1(t− a), t ≤ b
σ(t), b ≤ t ≤ c
γ2(t− c), t ≥ c .

Then γ is a solution being an extension of σ. □
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Proposition 2.12. Assume N ⊂ X is compact, and sequences (xn), (yn) ⊂
N, (tn) ⊂ R are convergent: xn → x, yn → y, tn → t. If connN (tn, xn, yn) ̸= ∅,
then connN (t, x, y) ̸= ∅.

Proof. First consider the case t ≥ 0. There exists a sequence (σn) of solutions
σn : [0, tn] → N such that σn(0) = xn, σn(tn) = yn for all n. Choose a number
T > t. We may assume that tn < T for all n. By Proposition 2.11, there exists
a sequence (τn) of solutions τn : [0, T ] → X being an extension of σn for all
n. By Proposition 2.10, there exist a subsequence (τni) of (τn) and a solution
γ : [0, T ] → X such that (τni) converges uniformly to γ on [0, T ].

Let 0 ≤ s < t. We may assume that s < tni for all i. Since

γ(s) = lim
i→∞

τni(s) = lim
i→∞

σni(s),

we have γ(s) ∈ N. Since γ is continuous, γ(t) = lims→t− γ(s) ∈ N. Thus we
have

γ|[0,t] : [0, t] → N.

We have γ(0) = limi→∞ τni(0) = limi→∞ σni(0) = limi→∞ xni = x. Given any
ε > 0, there exists δ > 0 such that if |t − s| < δ, then d(γ(t), γ(s)) < ε

3 . Since
(τni) converges uniformly to γ on [0, T ], yni → y and tni → t, there exists k
such that

d(τnk
(s), γ(s)) <

ε

3
for all s ∈ [0, T ], d(ynk

, y) <
ε

3
, and |t− tnk

| < δ.

Then we have

d(γ(t), y) ≤ d(γ(t), γ(tnk
)) + d(γ(tnk

), τnk
(tnk

)) + d(τnk
(tnk

), y)

= d(γ(t), γ(tnk
)) + d(γ(tnk

), τnk
(tnk

)) + d(σnk
(tnk

), y)

= d(γ(t), γ(tnk
)) + d(γ(tnk

), τnk
(tnk

)) + d(ynk
, y)

<
ε

3
+
ε

3
+
ε

3
= ε.

Thus γ(t) = y and so γ|[0,t] ∈ connN (t, x, y).
The proof of the case t < 0 is similar. □

We conclude the section with the following proposition.

Proposition 2.13. Assume N is compact, and (xn) ⊂ N is a sequence such
that xn → x. Then

(a) Let (tn) ⊂ R+ be a sequence such that solN ([0, tn], xn) ̸= ∅ for all n. If
tn → ∞, then solN (R+, x) ̸= ∅.

(b) Let (tn) ⊂ R− be a sequence such that solN ([tn, 0], xn) ̸= ∅ for all n. If
tn → −∞, then solN (R−, x) ̸= ∅.

Proof. (a) We may assume that tn < tn+1 for all n. Let σn ∈ solN ([0, tn], xn).
Since σn(0) = xn → x, by Proposition 2.10, there exist a subsequence (σni) of
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(σn) and a solution τ1 : [0, t1] → X such that (σni) converges uniformly to τ1
on [0, t1]. We have

τ1(0) = lim
i→∞

σni(0) = lim
i→∞

xni = lim
n→∞

xn = x.

Since τ1(s) = limi→∞ σni(s) ∈ N for all s ∈ [0, t1], we have τ1 : [0, t1] → N.
We may assume that n1 ≥ 2. Since σni = xni → x, by Proposition 2.10,
there exist a subsequence (σnik

) of (σni) and a solution τ2 : [0, t2] → X such

that (σnik
) converges uniformly to τ2 on [0, t2]. Clearly τ2 : [0, t2] → N. Since

τ2(s) = limk→∞ σnik
(s) = limi→∞ σni(s) = τ1(s) for all s ∈ [0, t1], we have

τ2 = τ1 on [0, t1]. Repeating this process, we obtain a sequence (τn) of solutions
τn : [0, tn] → N such that τn+1 = τn on [0, tn] for all n. Define γ : R+ → N by
γ|[0,tn] = τn. Then γ ∈ solN (R+, x).

(b) It is similar to the proof of (a). □

3. Existence of index pairs and their properties

In this section we investigate the existence of an index pair for an isolating
neighborhood and its properties. Let N be a compact subset of X. Define a
map fN : N × R → 2N by

fN (x, t) = {y ∈ N | connN (t, x, y) ̸= ∅}.

Proposition 3.1. The mapping fN is a dispersive dynamical system.

Proof. Let (x, t) ∈ N × R. We may assume that t ≥ 0. Let (yn) be a sequence
in fN (x, t). For each positive integer n, there exists a solution σn : [0, t] →
N such that σn(0) = x and σn(t) = yn. Since N is compact, (yn) has a
convergent subsequence. Let yn → y ∈ N. By Barbashin’s Theorem, there
exist a subsequence (σni) of (σn) and a solution σ : [0, t] → X such that (σni)
converges uniformly to σ on [0, t]. Since σ(s) = limi→∞ σni(s) ∈ N, we have
σ : [0, t] → N. Since

σ(0) = lim
i→∞

σni(0) = x and σ(t) = lim
i→∞

σni(t) = lim
i→∞

yni = y,

we have y ∈ fN (x, t). Thus f(x, t) is compact.
Assume that fN is not usc at (x, t). There exists ε > 0 such that for any

δ > 0 there exist y ∈ N, s ∈ R such that

d(x, y) < δ, |t− s| < δ, fN (y, s) ⊈ B(fN (x, t), ε) .

For each positive integer n, there exist xn ∈ N, tn ∈ R such that

d(x, xn) <
1

n
, |t− s| < 1

n
, fN (xn, tn) ⊈ B(fN (x, t), ε) .

Let yn ∈ fN (xn, tn) − B(fN (x, t), ε). Since N is compact, (yn) has a conver-
gent subsequence. Let yn → y ∈ N. Since xn → x, tn → t, yn → y, and
connN (tn, xn, yn) ̸= ∅ for all n, by Proposition 2.12, we have connN (t, x, y) ̸= ∅.
Thus y ∈ fN (x, t). This is a contradiction. Hence fN is usc.
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The verification of properties (1) to (3) of Definition 2.6 is straightforward.
□

Given a subset N ⊂ X, we introduce the following notation

inv+N = {x ∈ N | solN (R+, x) ̸= ∅},
inv−N = {x ∈ N | solN (R−, x) ̸= ∅},
invN = {x ∈ N | solN (R, x) ̸= ∅}.

By Proposition 2.8, we have invN = inv+N ∩ inv−N.
Let diamNf = sup{diamf(x, t) | x ∈ N, 0 ≤ t ≤ 1} and dist(A,B) =

inf{d(x, y) | x ∈ A, y ∈ B}, A,B ⊂ X. If A ⊂ X, we denote the boundary of A
by ∂A, its interior by intA, and let B(A, ε) = {x ∈ X | d(x,A) < ε} for ε > 0.

Definition 3.2. A compact set N ⊂ X is called an isolating neighborhood for
a dispersive dynamical system f if

B(invN, diamNf) ⊂ intN,

or equivalently
dist(invN, ∂N) > diamNf.

Definition 3.3. LetN be an isolating neighborhood for a dispersive dynamical
system f. A pair P = (P1, P2) of compact subsets P2 ⊂ P1 ⊂ N is called an
index pair if the following conditions are satisfied

(i) f(Pi, t) ∩N ⊂ Pi, i = 1, 2, 0 ≤ t ≤ 1;
(ii) f(P1 − P2, t) ⊂ N, 0 ≤ t ≤ 1;
(iii) invN ⊂ int(P1 − P2).

Our first aim is to prove the following result.

Theorem 3.4. Let N be an isolating neighborhood for a dispersive dynamical
system f and W a neighborhood of invN. Then there exists an index pair
P = (P1, P2) for N with P1 − P2 ⊂W.

The proof is based on several lemmas. First, given N ⊂ X, s ∈ N, τ ∈ R+,
the following notation will be used

fN,τ (x) = {y ∈ N | connN (τ, x, y) ̸= ∅},
fN,−τ (x) = {y ∈ N | connN (−τ, x, y) ̸= ∅},

f+N (x) =
∪

r∈R+

fN,τ (x), f
−
N (x) =

∪
r∈R+

fN,−τ (x).

Lemma 3.5. If N ⊂ X is compact, then the map fN,τ : N → 2N is usc for
any τ ∈ R.

Proof. It is enough to prove that the assertion for τ ∈ R+ since the case of a
negative τ is analogous. Suppose that fN,τ is not usc at x ∈ N. There exists
ε > 0 such that for each δ > 0 there exists y ∈ N such that d(x, y) < δ
and fN,τ (y) ⊈ B(fN,τ (x), ε). For each positive integer n, there exists xn ∈ N



42 YOON HOE GOO AND JONG-SUH PARK

such that d(x, xn) <
1
n and fN,τ (xn) ⊈ B(fN,τ (x), ε). Let yn ∈ fN,τ (xn) −

B(fN,τ (x), ε). There exists a solution σn : [0, τ ] → N such that σn(0) = xn
and σn(τ) = yn. Since σn(0) = xn → x, by Barbashin’s Theorem, there exist
a subsequence (σni) of (σn) and a solution γ : [0, τ ] → X such that (σni)
converges uniformly to γ on [0, τ ]. Clearly γ : [0, τ ] → N. Since N is compact,
(yni) has a convergent subsequence. Let yni → y ∈ N. We have

γ(0) = lim
i→∞

σni(0) = lim
i→∞

xni = lim
n→∞

xn = x,

γ(τ) = lim
i→∞

σni(τ) = lim
i→∞

yni = y.

Thus y ∈ fN,τ (x). Since d(yn, fN,τ (x)) ≥ ε for all i, we have d(y, fN,τ (x)) ≥ ε.
This is a contradiction. Hence fN,τ is usc. □

Lemma 3.6. Suppose that D(fN,τ ) ≡ {x ∈ N | fN,τ (x) ̸= ∅} are nonempty
for all τ ∈ R. Then invN is nonempty. Moreover, inv+N =

∩
τ∈R+ D(fN,τ )

and inv−N =
∩

τ∈R− D(fN,τ ).

Proof. Since {D(fN,τ ) | τ ∈ R+} is a family of nonempty closed sets with
finite intersection property, K = ∩τ∈R+D(fN,τ ) is nonempty. We prove that
inv+N = K. The proof for inv−N is analogous and the conclusion for invN
follows from Proposition 2.8. The inclusion inv+N ⊂ K is obvious. Let x ∈ K.
For each positive integer n, there exists a solution σn : [0, n] → N such that
σn(0) = x. By Proposition 2.13, there exists a solution σ : R+ → N such that
σ(0) = x. Thus x ∈ inv+N. □

Lemma 3.7. If N ⊂ X is compact, then
(a) the sets inv+N, inv−N and invN are compact;
(b) if A is compact with inv−N ⊂ A ⊂ N, then f+N (A) is compact.

Proof. (a) Obvious.

(b) It is sufficient to show that f+N (A) is closed. Let y ∈ f+N (A). There exists

a sequence (yn) in f
+
N (A) such that yn → y. For each positive integer n, there

exist tn ∈ R+ and a solution σn : [0, tn] → N such that σn(tn) = yn and
σn(0) ∈ A.

Case 1 : (tn) is bounded. (tn) has a convergent subsequence. Let tn → t ∈
R+. By Proposition 2.12, we have y ∈ fN,t(A) ⊂ f+N (A).

Case 2 : (tn) is unbounded. We may assume that tn → ∞. For each positive
integer n, define γn : [−tn, 0] → N by γn(t) = σn(t+ tn). Since γn is a solution
and γn(0) = σn(tn) = yn, we have fN,−tn(yn) ̸= ∅, that is yn ∈ D(fN,−tn).
Thus we have

y ∈
∞∩

n=1

D(fN,−tn) = inv−N ⊂ A ⊂ f+N (A).

Hence f+N (A) is closed. □
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Lemma 3.8. If K ⊂ N is a compact subset of X with K ∩ inv+N = ∅
(respectively, K ∩ inv−N = ∅), then

(a) there exists T ∈ R+ (respectively, R−) such that fN,τ (K) = ∅ for all
τ ≥ T (respectively, τ ≤ T );

(b) the map f+N (respectively f−N ) is usc on K;

(c) f+N (K) ∩ inv+N = ∅ (respectively, f−N ∩ inv−N = ∅).

Proof. (a) Assume that K ∩ inv+N = ∅. For each x ∈ K, since x /∈ inv+N,
by Lemma 3.6, there exists tx ∈ R+ such that fN,tx(x) = ∅. Since fN,tx is usc,
there exists a neighborhood Vx of x such that fN,tx(y) = ∅ for all y ∈ Vx. Then
the family {Vx | x ∈ K} is an open cover of K. Since K is compact, there
are finitely many x1, . . . , xn ∈ K such that K ⊂ ∪n

i=1Vxi . Let T = max txi . If
τ ≥ T, then

fN,τ (K) ⊂ fN,τ (

n∪
i=1

Vxi) =

n∪
i=1

fN,τ (Vxi) ⊂
n∪

i=1

fN,txi
(Vxi) = ∅.

Thus fN,τ (K) = ∅.
(b) For any open subset U of X, (f+N )−1(U) = ∪τ∈R+(fN,τ )

−1(U) is open.

Thus f+N is usc.

(c) Let x ∈ f+N (K) ∩ inv+N. Since x ∈ f+N (K), there exist τ ∈ R+ and a
solution σ1 : [0, τ ] → N such that σ1(τ) = x and σ1(0) ∈ K. Since x ∈ inv+N,
there exists a solution σ2 : R+ → N such that σ2(0) = x. Define σ : R+ → N
by

σ(t) =

{
σ1(t), 0 ≤ t ≤ τ
σ2(t− τ), t ≥ τ .

Since σ is a solution and σ(0) = σ1(0) ∈ K, we have σ(T ) ∈ fN,T (K)∩ inv+N.
This is a contradiction. Thus f+N (K) ∩ inv+N = ∅. □

Lemma 3.9. If N is a compact subset of X, then for any neighborhood V of
inv−N there exists a compact neighborhood A of inv−N such that f+N (A) ⊂ V.

Proof. Since N−V is compact and (N−V )∩ inv−N = ∅, by Lemma 3.8, there
exists T ∈ R+ such that fN,−T (N − V ) = ∅. For each x ∈ inv−N, since fN,T

is usc, there exists a compact neighborhood Vx of x such that fN,T (Vx) ⊂ V.
Since inv−N is compact, there are finitely many points x1, . . . , xn ∈ inv−N
such that K ⊂ ∪n

i=1Vxi . Let A = ∪n
i=1Vxi . Then A is a compact neighborhood

of inv−N and

fN,T (A) ⊂ fN,T (
n∪

i=1

Vxi) =
n∪

i=1

fN,T (Vxi) ⊂ V.

Let y ∈ f+N (A). Then there exist τ ∈ R+ and x ∈ A such that y ∈ fN,τ (x). If
τ ≤ T, then

y ∈ fN,τ (x) ⊂ fN,τ (A) ⊂ fN,T (A) ⊂ V.
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If τ > T, then we have x ∈ fN,−τ (y) ⊂ fN,−T (y). Since fN,−T (N − V ) = ∅, we
have y ∈ V. Thus f+N (A) ⊂ V. □

Proof of Theorem 3.4. Since N is an isolating neighborhood, we have

invN ⊂ B(invN, diamNf) ⊂ invN.

Thus we may assume that W ⊂ intN. Choose 0 < ε < dist(invN, ∂N) −
diamnf and let γ = ε+diamNf. Since γ < dist(invN, ∂N), we haveB(invN, γ)
⊂ intN. Since the set {x ∈ X | f(x, [0, 1]) ⊂ B(invN, γ)} is an open neigh-
borhood of invN, we may assume that f(W, t) ⊂ intN for all 0 ≤ t ≤ 1. Let
U and V be open neighborhoods of inv+N and inv−N, respectively, such that
U ∩ V ⊂W. By Lemma 3.9, there exists a compact neighborhood A of inv−N
such that f+N (A) ⊂ V. We define

P1 = f+N (A), P2 = f+N (P1 − U) .

Then P1 ⊂ V and P1−U ⊂ P2 which implies that P1−P2 ⊂ U. Thus P1−P2 ⊂
U ∩ V ⊂ W. We verify that (P1, P2) is an index pair. By Lemma 3.7, P1 is
compact. Since P1 − U is compact, by Lemma 3.7, P2 is compact. We have

P2 = f+N (P1 − U) ⊂ f+N (P1) = f+N (f+N (A)) = f+N (A) = P1.

To verify (i), let x ∈ Pi and y ∈ f(x, t) ∩N. Since x ∈ Pi, there exist τ ∈ R+

and a solution σ1 : [0, τ ] → N such that σ1(τ) = x and σ1(0) ∈ A in the case of
i = 1, σ1(0) ∈ P1 − U in the case i = 2. There exists a solution σ2 : [0, t] → N
such that σ2(0) = x and σ2(t) = y. Define γ : [0, τ + t] → N by

γ(s) =

{
σ1(s), 0 ≤ s ≤ τ
σ2(s− τ), τ ≤ s ≤ τ + t .

Then γ is a solution and γ(0) = σ1(0), γ(τ + t) = σ2(t) = y. Thus y ∈ Pi. Since
P1 − P2 ⊂W, we have f(P1 − P2, t) ⊂ f(W, t) ⊂ N for all 0 ≤ t ≤ 1. Thus (ii)
is verified. In order to verify (iii), observe that P1 is a neighborhood of inv−N.
Since P1 − U is compact and (P1 − U) ∩ inv+N = ∅, by Lemma 3.8,

P2 ∩ inv+N = f+N (P1 − U) ∩ inv+N = ∅.

Thus N − P2 is a neighborhood of inv+N. Hence P1 − P2 = P1 ∩ (N − P2) is
a neighborhood of inv−N ∩ inv+N = invN. □

We shall now discuss several properties of index pairs which will be used in
next section. In the remainder in this section, we denote f(x, 1) by F (x).

Proposition 3.10. (a) If P is an index pair for N, then (P1 ∩F (P2))− (P2 ∩
F (P2)) = P1 − P2.

(b) If P and Q are index pairs for N, then so is P ∩Q.
(c) If P ⊂ Q are index pairs for N , then so are (P1, P1 ∩ Q2) and (P1 ∪

Q2, Q2).
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Proof. (a) We have (P1∪F (P2))− (P2∪F (P2)) = P1− (P2∪F (P2)) ⊂ P1−P2.
Let x ∈ P1 − P2. If x ∈ F (P2), then we have x ∈ F (P2) ∩ N ⊂ P2. This is a
contradiction. Thus x ∈ (P1 ∪ F (P2))− (P2 ∪ F (P2)).
(b) Verification of (i) and (ii) is obvious. For (iii), let us note that

int(P1 − P2) ∩ int(Q1 −Q2) ⊂ int(P1 ∩Q1 − (P2 ∩Q2))

⊂ int(P1 ∩Q1 − (P2 ∪Q2)).

(c) Obvious. □
Proposition 3.11. Let P ⊂ Q be index pairs for N such that P1 = Q1 or
P2 = Q2. Define a pair of sets G(P,Q) by

Gi(P,Q) = Pi ∪ (F (Qi) ∩N), i = 1, 2.

Then (a) if Pi = Qi, then Gi(P,Q) = Pi = Qi, i = 1, 2;
(b) P ⊂ G(P,Q) ⊂ Q;
(c) G(P,Q) is an index pair;
(d) F (Qi) ∩N ⊂ Gi(P,Q), i = 1, 2.

Proof. (a), (b) and (d) are clear. It remains to prove that (c). For (i), let
x ∈ Gi(P,Q), y ∈ F (x) ∩ N. If x ∈ Pi, then y ∈ F (Pi) ∩ N ⊂ Pi ⊂ Gi(P,Q).
If x ∈ F (Qi) ∩ N ⊂ Qi, then y ∈ F (Qi) ∩ N ⊂ Pi ⊂ Gi(P,Q). For (ii), since
G1(P,Q) = P1 ∪ (F (Q1) ∩N) ⊂ P1 ∪Q1 = Q1, P2 ⊂ G2(P,Q), we have

G1(P,Q)−G2(P,Q) ⊂ Q1 − P2.

If P1 = Q1, we have F (G1(P,Q)−G2(P,Q)) ⊂ F (Q1−P2) = F (P1−P2) ⊂ N. If
P2 = Q2, we have F (G1(P,Q)−G2(P,Q)) ⊂ F (Q1 − P2) = F (Q1 −Q2) ⊂ N.
For (iii), we show that (P1 − P2) ∩ (Q1 − Q2) ⊂ G1(P,Q) − G2(P,Q). Let
y ∈ (P1−P2)∩ (Q1−Q2). Since P1 ⊂ G1(P,Q) and G2(P,Q) = P2 ∪ (F (Q2)∩
N) ⊂ P2 ∪Q2 = Q2, we have y ∈ G1(P,Q) and

invN ⊂ int(P1 − P2) ∩ int(Q1 −Q2)

⊂ int((P1 − P2) ∩ (Q1 −Q2))

⊂ int(G1(P,Q)−G2(P,Q)) . □
Proposition 3.12. Let P ⊂ Q be index pairs such that P1 = Q1 or P2 = Q2.
Then there exists a sequence of pairs

P = Qn ⊂ Qn−1 ⊂ · · · ⊂ Q1 ⊂ Q0 = Q

with the following properties:
(a) if Pi = Qi, then Q

k
i = Pi = Qi for all k = 1, 2, . . . , n− 1, i = 1, 2;

(b) Qk is an index pair for all k = 1, 2, . . . , n− 1;

(c) F (Qk
i ) ∩N ⊂ Qk+1

i , i = 1, 2, k = 0, 1, . . . , n− 1.

Proof. We denote Q0 = Q,Qk+1 = G(P,Qk). By Proposition 3.11, (Qk) is a
decreasing sequence of index pairs containing P and satisfying (a), (b) and
(c). It remains to show that Qn = P for some n. Suppose that the inclusion
P ⊂ Qk is strict for all k. We may assume that Qk

2 ̸= P2 for all k. For any



46 YOON HOE GOO AND JONG-SUH PARK

positive integer k, choose σ(k) ∈ Qk
2 − P2. Since σ(k) ∈ F (Qk−1

2 ) ∩ N, there
exists σ(k − 1) ∈ Qk−1

2 such that σ(k) ∈ F (σ(k − 1)). If σ(k − 1) ∈ P2, then

σ(k) ∈ F (P2) ∩N ⊂ P2. This is a contradiction. Thus σ(k − 1) ∈ Qk−1
2 − P2.

Repeating this process, we have solution σk : [0, k] → Q2 − intP2 such that
σk(i) = σ(i), 0 ≤ i ≤ k. Since D(fQ2−intP2,k) ̸= ∅ for all k, by Lemma 3.6,
we have ∅ ̸= inv(Q2 − intP2) ⊂ invQ2. On the other hand invQ2 ⊂ Q2 and
invQ2 ⊂ int(Q1−Q2) ⊂ Q1−Q2 implies that invQ2 = ∅, a contradiction. □

4. Existence of stable index pairs

Let (X, d) be a locally compact metric space and Ω(X) the set of all contin-
uous dispersive dynamical systems on X. Define a metric ρ : Ω(X)×Ω(X) → R
by

ρ(f, g) = sup
{
max{ 1

|t|
D(f(x, t), g(x, t)) | x ∈ X} | t ̸= 0

}
for all f, g ∈ Ω(X), where D is the Hausdorff metric induced by d. Let Λ ⊂ R
be a compact interval.

Definition 4.1. A map ϕ : Λ → Ω(X) will be called a parametrized family of
dispersive dynamical systems if the map (λ, x, t) ∈ Λ×X×R 7→ ϕ(λ)(x, t) ∈ 2X

is usc.

Define a map ψ : Λ×X × R → 2Λ×X by ψ(λ, x, t) = {λ} × ϕ(λ)(x, t). It is
easy to show that ψ is a dispersive dynamical system on Λ×X.

Given a compact set N ⊂ X and λ ∈ Λ, the sets inv(±)N with respect to
ϕ(λ) are denoted by inv(±)(N,λ).

We need the following propositions to prove the existence of an stable index
pair.

Proposition 4.2. Let N ⊂ X be compact. Then the mappings

λ ∈ Λ 7→ inv+(N,λ) ∈ 2N ,

λ ∈ Λ 7→ inv−(N,λ) ∈ 2N ,

λ ∈ Λ 7→ inv(N,λ) ∈ 2N

are usc.

Proof. We prove the assertion for the first map only, since the other two proofs
are by extending the same argument to negative numbers. Assume that the
map

λ ∈ Λ 7→ inv+(N,λ) ∈ 2N

is not usc at λ0 ∈ Λ. Then there exist a neighborhood U of inv+(N,λ0) and
a sequence (λn) in Λ such that λn → λ0 and inv+(N,λn) ⊈ for all n. Choose
xn ∈ inv+(N,λn)− U and

σn ∈ solN (R+, xn, λn) ⊂ solΛ×N (R+, (λn, xn)).
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Since N is compact, (xn) has a convergent subsequence. Let xn → x ∈ N −
U. By Proposition 2.12, there exists σ ∈ solΛ×N (R+, (λ0, x)). Since σ(0) =
(λ0, x) ∈ {λ0} × N, we have σ ∈ solN (R+, x, λ0). Thus x ∈ inv+(N,λ0) ⊂ U,
which contradicts x /∈ U. □

Proposition 4.3. Let λ0 ∈ Λ and let N be an isolating neighborhood for ϕ(λ0).
Then N is an isolating neighborhood for ϕ(λ) for all λ sufficiently close to λ0.

Proof. Since dist(inv(N,λ0), ∂N) > diamNϕ(λ0), choose ε such that

0 < 3ε < dist(inv(N,λ0), ∂N)− diamNϕ(λ0).

Then B(inv(N,λ0), diamNϕ(λ0) + 3ε) ⊂ intN. Since the map

(λ, x, t) ∈ Λ×X × R 7→ ϕ(λ)(x, t) ∈ 2X

is usc and N is compact, ϕ(λ)(x, t) ⊂ B(ϕ(λ0)(x, t), ε) for all λ close to λ0, all
x ∈ N and all 0 ≤ t ≤ 1. By compactness of N, diamNϕ(λ) < diamNϕ(λ0)+2ε
for all λ close to λ0. By Proposition 4.2, inv(N,λ) ⊂ B(inv(N,λ0), ε) for all λ
close to λ0 and we get

B(inv(N,λ), diamNϕ(λ)) ⊂ B
(
B(inv(N,λ0), ε), diamNϕ(λ0) + 2ε

)
= B(inv(N,λ0), diamNϕ(λ0) + 3ε)

⊂ intN. □

Proposition 4.4. Let f : X×R → 2X be a dispersive dynamical system, N an
isolating neighborhood for f and P an index pair for N and f. If g : X×R → 2X

is a dispersive dynamical system such that f(x, t) ⊂ f(x, t) for all (x, t) ∈ X×R,
then N is an isolating neighborhood for g, inv(±)(N, g) ⊂ inv(±)(N, f) and P
is also an index pair for N and g.

Proof. It is clear. □

The main result of this section is the following.

Theorem 4.5. Let f : X × R → 2X be a continuous dispersive dynamical
system, N an isolating neighborhood for f and W an open neighborhood of
invN. Then there exists an index pair P = (P1, P2) for N with P1 − P2 ⊂ W
which is stable under small continuous perturbations of f, i.e., there exists ε > 0
such that if g ∈ Bρ(f, ε), then P also is an index pair for g.

Proof. Define a family of dispersive dynamical systems ϕ : [0, 1] → Ω(X) by

ϕλ(x, t) = B(f(x, t), λt) for x ∈ X, t ∈ R+,

ϕλ(x, t) = {y ∈ X | x ∈ ϕλ(y,−t)} for x ∈ X, t ∈ R−.

By Propositions 4.2 and 4.3, there exists τ > 0 such that N is an isolating
neighborhood for ϕλ and inv(N,λ) ⊂W provided 0 ≤ λ ≤ τ. Define

P1 = inv−(N, τ), P2 = P1 − int(inv+(N, τ)).
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Note that P1 − P2 = inv(N, τ) ⊂ W. We shall verify below that P = (P1, P2)
is an index pair for all ϕλ with 0 ≤ λ < τ. In particular, it is an index pair
for ϕ(0) = f. Moreover, if g ∈ Bρ(f, ε) for ε < τ, then g(x, t) ⊂ ϕτ (x, t) for all
(x, t) ∈ X×R. Thus the conclusion follows from Proposition 4.4. We will show
that P is an index pair for ϕλ provided 0 ≤ λ < τ.

(i) ϕλ(Pi, t) ∩N ⊂ Pi, i = 1, 2, 0 ≤ t ≤ 1.
Let y ∈ ϕλ(P1, t) ∩ N. Then there exists x ∈ P1 such that y ∈ ϕλ(x, t).

Since P1 = inv−(N, τ), there exists a solution σ1 : R− → N for ϕτ such
that σ1(0) = x. Also there exists a solution σ2 : [0, t] → N for ϕλ such that
σ2(0) = x, σ2(t) = y. Since

σ2(s) ∈ ϕλ(x, s) ⊂ ϕτ (x, s)

for all 0 ≤ s ≤ t, σ2 is a solution for ϕτ . Define σ : R− → N by

σ(s) =

{
σ2(s+ t), −t ≤ s ≤ 0
σ1(s+ t), s ≤ t .

Then σ is a solution for ϕτ and since σ(0) = y, we have y ∈ inv−(N, τ) =
P1. Let y ∈ ϕλ(P2, t) ∩ N. Then there exists x ∈ P2 such that y ∈ ϕλ(s, t).
Since x ∈ P1, we have y ∈ P1. In order to show that y /∈ int(inv+(N, τ)),
suppose that y ∈ int(inv+(N, τ)). Then there exists ε > 0 such that B(y, ε) ⊂
inv+(N, τ). Since ϕτ ∈ Ω(X), if d(x, z) < ε, then there exists δ > 0 such that
ϕτ (x, t) ⊂ B(ϕτ (z, t), ε). Since y ∈ ϕλ(x, t) ⊂ ϕτ (x, t) for z ∈ B(x, δ), there
exists p ∈ ϕτ (z, t) such that d(y, p) < ε. Since p ∈ B(y, ε) ⊂ inv+(N, τ), there
exists a solution σ1 : R+ → N for ϕτ such that ϕ1(0) = p. Since p ∈ ϕτ (z, t),
there exists a solution σ2 : [0, t] → N for ϕτ such that σ2(0) = z, σ2(t) = p.
Define σ : R+ → N by

σ(s) =

{
σ2(s), 0 ≤ s ≤ t
σ1(s− t), s ≥ t .

Then σ is a solution for ϕτ . Since σ(0) = z, we have z ∈ inv+(N, τ), that is,
B(x, δ) ⊂ inv+(N, τ). Therefore we have x ∈ int(inv+(N, τ)). This contradicts
x ∈ P2.

(ii) ϕλ(P1 − P2, t) ⊂ N .
Since ϕλ(P1 − P2, t) ⊂ ϕτ (P1 − P2, t) ⊂ N, it holds.
(iii) inv(N,λ) ⊂ int(P1 − P2).
Since int(P1 − P2) = int(inv(N, τ)), we show only that the following holds;

0 ≤ λ < τ implies inv±(N,λ) ⊂ int(inv±(N, τ)).

Since τ − λ > 0, if d(x, z) < δ, then there exists δ > 0 such that f(x, 1) ⊂
B(f(z, 1), τ − λ). We have

ϕλ(x, 1) = B(f(x, 1), λ) ⊂ B
(
B(f(z, 1), τ − λ), λ

)
= B(f(z, 1), τ) = ϕτ (z, 1).

Let x ∈ inv+(N,λ). Then there exists a solution σ1 : R+ → N for ϕλ such that
σ1(0) = x. For any z ∈ B(x, δ), let y ∈ ϕλ(x, 1) ⊂ ϕτ (z, 1). Then there exist a
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solution σ2 : [0, 1] → N for ϕλ and a solution σ3 : [0, 1] → N for ϕτ such that
σ2(0) = x, σ2(1) = y and σ3(0) = z, σ3(1) = y. Define σ : R+ → N by

σ(s) =

 σ3(s), 0 ≤ s ≤ 1
σ2(2− s), 1 ≤ s ≤ 2
σ1(s− 2), s ≥ 2.

Then σ is a solution for ϕτ . Since σ(0) = z, we have z ∈ inv+(N, τ). Thus we
have

B(inv+(N,λ), δ) ⊂ inv+(N, τ)

and so it follows that inv+(N,λ) ⊂ int(inv+(N, τ)).
Let x ∈ inv−(N,λ). Then there exists a solution σ1 : R− → N for ϕλ such

that σ1(0) = x. Let σ(−1) = y. Then we have x = σ(0) ∈ ϕλ(σ(−1), 1) =
ϕλ(y, 1). For any z ∈ B(x, τ − λ), we have

z ∈ B(ϕλ(y, 1), τ − λ) = B
(
B(f(y, 1), λ), τ − λ

)
= B(f(y, 1), τ) = ϕτ (y, 1).

Therefore there exists a solution σ2 : [0, 1] → N for ϕτ such that σ2(0) =
y, σ2(1) = z. Define σ : R− → N by

σ(s) =

{
σ2(s+ 1), −1 ≤ s ≤ 0
σ1(s+ 1), s ≤ −1 .

Then σ is a solution for ϕτ . Since σ(0) = z, we have z ∈ inv−(N, τ). Hence we
have

B(inv−(N,λ), τ − λ) ⊂ inv−(N, τ).

It follows that inv−(N,λ) ⊂ int(inv−(N, τ)). □
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