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P t
(ωr,s)

-CLOSED SPACES AND PRE-(ωr, s)t-θf -CLUSTER SETS

Bin Mostakim Uzzal Afsan and Chanchal Kumar Basu

Abstract. Using (r, s)-preopen sets [14] and pre-ωt-closures [6], a new
kind of covering property P t

(ωr,s)
-closedness is introduced in a bitopo-

logical space and several characterizations via filter bases, nets and grills

[30] along with various properties of such concept are investigated. Two
new types of cluster sets, namely pre-(ωr, s)t-θf -cluster sets and (r, s)t-
θf -precluster sets of functions and multifunctions between two bitopo-

logical spaces are introduced. Several properties of pre-(ωr, s)t-θf -cluster
sets are investigated and using the degeneracy of such cluster sets, some
new characterizations of some separation axioms in topological spaces or
in bitopological spaces are obtained. A sufficient condition for P t

(ωr,s)
-

closedness has also been established in terms of pre-(ωr, s)t-θf -cluster
sets.

1. Introduction

Ever since the introduction of bitopological spaces by J. C. Kelly [17] in the
year 1963, many topologists have introduced and investigated various concepts
in bitopological spaces and also generalized certain existing topological prop-
erties. Because of having various applications, now a days, it has become a
mature field of mathematical activity. Topologists are often keen in investi-
gating properties closely related to compactness using certain new accessories
which have been developed recently. The notion of ω-open sets introduced by
H. Z. Hdeib [11] has been studied by a good number of researchers in recent
times. Contributions of Noiri, Omari and Noorani [24, 25], Omari and Noorani
[26, 27], Zoubi and Nashef [3] and C. K. Basu and B. M. Uzzal Afsan [6] in the
arena of ω-open sets and associated concepts are worth to be mentioned. In
this paper, in Section 3, we introduce pre-(ωr, s)-open sets and allied concepts
in bitopological spaces which have been exploited effectively in investigating
certain concepts which have been developed in the subsequent sections. In
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Section 4, a new type of covering property P t
(ωr,s)

-closedness is introduced in a

bitopological space (X, τ1, τ2) using (r, s)-preopen sets [14] and pre-ωt-closures
(=pre-ω-closures with respect to the topology τt) [6] . Such concept is identical
to the Pω-closedness [6] if the topologies on X are taken the same. Several char-
acterizations via filter bases, nets and grills [30] along with various properties
of such concept are investigated. Further, in the last section, two new types
of cluster sets, namely pre-(ωr, s)t-θf -cluster sets (resp. pre-(ωr, s)t-θf -cluster
sets) of functions and multifunctions have been introduced between two bitopo-
logical spaces in terms of pre-ω-closure [6] (resp. preclosure [21]), θ-closure [31]
and (r, s)-preopen sets [14]. Finally, a sufficient condition for P t

(ωr,s)
-closedness

in terms of pre-(ωr, s)t-θf -cluster sets has been given.

2. Prerequisites

Let (X, τ) be a topological space and A ⊂ X. Then a point x ∈ X is called
a condensation point of A if for each open set U containing x, A ∩ U is un-
countable. A set A is called ω-closed [11] if it contains all of its condensation
points and the complement of an ω-closed set is called an ω-open set [11] or
equivalently, A ⊂ X is ω-open if and only if for each x ∈ A there exists an
open set U containing x such that U − A is countable. Throughout this pa-
per, spaces (X, τ1, τ2) and (Y, ϱ1, ϱ2) (or simply X and Y ) represent non-empty
bitopological spaces and r, s, t and f are indices varying over the set {1, 2}.
The set of all ω-open sets of space X when the topology τr is considered is
denoted by τωr . It is to be noted that τωr is a topology on X finer than τr
[11]. A subset A of a topological space X is called semi-open [18] (resp. reg-
ular open, α-open [23], preopen [21], β-open [2], semi-ω-open [24], α-ω-open
[24], pre-ω-open [24], β-ω-open [24]) if A ⊂ cl(int(A)) (resp. A = int(cl(A)),
A ⊂ int(cl(int(A))), A ⊂ int(cl(A)), A ⊂ cl(int(cl(A))), A ⊂ cl(intω(A)),
A ⊂ intω(cl(intω(A))), A ⊂ intω(cl(A)) and A ⊂ cl(intω(cl(A)))). The θ-
closure of a subset A of a topological space (X, τ) is the set θ-cl(A) = {x ∈ X :
cl(U) ∩ A ̸= ∅, ∀U ∈ τ} [31]. The pre-ω-closure of a subset A of a topological
space (X, τ) is the intersection of all the pre-ω-closed subsets of X containing
A [6]. The (r, s)-θ-closure of a subset A of a bitopological space (X, τ1, τ2)
is the set r-clθs(A) = {x ∈ X : cls(U) ∩ A ̸= ∅,∀U ∈ τr} [16]. The closure
(resp. interior, θ-closure, ω-interior [11], ω-closure [11], pre-ω-interior [6], pre-
ω-closure [6]) of a subset A of a space X with respect to the topology τr (where
r = 1, 2) (read as r-closure (resp. r-interior, θr-closure, ωr-interior, ωr-closure,
pre-ωr-interior, pre-ωr-closure)) are denoted by clr(A) (resp. intr(A), clθr (A),
intωr (A), clωr (A), pintωr (A), pclωr (A)). A subset A of a bitopological space
X is called (r, s)-regular open [9] (resp. (r, s)-preopen [14]) if A = intr(cls(A))
(resp. A ⊂ intr(cls(A))). The family of all (r, s)-preopen (resp. (r, s)-preclopen
i.e., (r, s)-preclosed as well as (r, s)-preopen and (r, s)-regular open) subsets of
X is denoted by (r, s)-PO(X) (resp. (r, s)-PCO(X) and (r, s)-RO(X)). The
family of all (r, s)-preopen (resp. (r, s)-preclopen i.e., (r, s)-preclosed as well
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as (r, s)-preopen and (r, s)-regular open) subsets of X containing x ∈ X is de-
noted by (r, s)PO(X,x) (resp. (r, s)PCO(X,x) and (r, s)RO(X,x)) and the
family of all (r, s)-preopen subsets of X containing a subset K ⊂ X is denoted
by (r, s)PO(X,K). The family of all preopen sets in the topological space
(X, τr) is denoted by (r)PO(X). (r, s)pcl(A) is the intersection of all (r, s)-
preclosed subsets of X containing A [14]. A topological space (X, τ) is called
almost regular [28] if for every regular closed set A in X and for each x ∈ A,
there exist disjoint open sets M and N containing x and V respectively. It
is well known that in an almost regular space X, θ-cl(A) is θ-closed for each
A ⊂ X. A bitopological space X is said to satisfy f -T (where f = 1, 2) prop-
erty if (X, τf ) satisfy the property T . A bitopological space X is called pairwise
(r, f)-Urysohn [19] if each pair of distinct points x, y ∈ X, there exist U ∈ τr(x)
and V ∈ τf (y) such that clr(U) ∩ clf (V ) = ∅.

Thron [30] has defined a grill as a non-empty family G of non-empty subsets
of X satisfying (a) A ∈ G and A ⊂ B ⇒ B ∈ G and (b) A ∪ B ∈ G ⇒
either A ∈ G or B ∈ G. Thron [30] also has shown that F(G) = {A ⊂ X :
A ∩ F ̸= ∅, ∀F ∈ G} is a filter on X and there exists an ultrafilter F such that
F(G) ⊂ F ⊂ G.

The results of the following theorem are used frequently in this paper.

Theorem 2.1 ([6]). For subsets A,B of a topological space X, following prop-
erties hold:

(a) pclω(A) ⊂ pcl(A) and pclω(A) ⊂ clω(A).
(b) A ⊂ B implies pclω(A) ⊂ pclω(B) and pintω(A) ⊂ pintω(B).
(c) pclω(pclω(A)) = pclω(A) and pintω(pintω(A)) = pintω(A).
(d) A is pre-ω-closed if and only if pclω(A) = A.
(e) A is pre-ω-open if and only if pintω(A) = A.
(f) pclω(X −A) = X − pintω(A).
(g) pintω(X −A) = X − pclω(A).

3. Pre-(ωr, s)-open sets

Definition 3.1. A subset A of a bitopological space (X, τ1, τ2) is called pre-
(ωr, s)-open if A ⊂ intωr (cls(A)).

The complement of a pre-(ωr, s)-open set is called a pre-(ωr, s)-closed set.
The family of all pre-(ωr, s)-open sets of X is denoted by P (ωr, s)O(X) and

the family of all pre-(ωr, s)-open sets of X containing a point x ∈ X is denoted
by P (ωr, s)O(X,x).

Remark 3.2. (i) If r = s, then every pre-(ωr, s)-open set is pre-ω-open in
(X, τr).

(ii) Every (r, s)-preopen set is pre-(ωr, s)-open, but the converse need not
be true that is established with the following example.
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Example 3.3. Consider the real line X = R with the co-countable topol-
ogy τ1 and the topology τ2 = {S ⊂ R : Q ⊂ S,Q is the set of all rational
numbers}. Then the set N of all positive integers is pre-(ω2, 1)-open but is not
(2, 1)-preopen in the bitopological space (X, τ1, τ2). In fact intω2(N) = N and
int2(cl1(N)) = int2(N) = ∅.

Lemma 3.4. An arbitrary union of pre-(ωr, s)-open sets in a bitopological
space X is a pre-(ωr, s)-open set.

Proof. The proof is obvious and is thus omitted. □

Definition 3.5. Let A be a subset of a bitopological space X. Then pre-
(ωr, s)-interior (resp. pre-(ωr, s)-closure) is denoted by pint(ωr,s)(A) (resp.
pcl(ωr,s)(A)) and is defined as the set pint(ωr,s)(A) = ∪{G ⊂ A : G ∈ P (ωr, s)O
(X)} (resp. pcl(ωr,s)(A) = ∩{G ⊃ A : X −G ∈ P (ωr, s)O(X)}).

Theorem 3.6. For subsets A,B of a topological space X, following properties
hold:

(a) pcl(ωr,s)(A) ⊂ (r, s)pcl(A).
(b) A ⊂ B implies pcl(ωr,s)(A) ⊂ pcl(ωr,s)(B) and pint(ωr,s)(A) ⊂ pint(ωr,s)

(B).
(c) pcl(ωr,s)(pcl(ωr,s)(A)) = pcl(ωr,s)(A) and pcl(ωr,s)(pcl(ωr,s)(A)) = pcl(ωr,s)

(A).
(d) A is pre-(ωr, s)-closed if and only if pcl(ωr,s)(A) = A.
(e) A is pre-(ωr, s)-open if and only if pint(ωr,s)(A) = A.
(f) pcl(ωr,s)(X −A) = X − pint(ωr,s)(A).
(g) pint(ωr,s)(X −A) = X − pcl(ωr,s)(A).

The reverse inclusion of the above Theorem 3.6(a) is not true in general.
This fact is reflected in the following example.

Example 3.7. Consider the bitopological space X = Q ∪ {
√
2} with the co-

countable topology τ1 and the topology τ2 generated by the base {{x,
√
2} :

x ∈ X}. Then τω1 = τω2 = P (ωr, s)O(X) = P (X) and (2, 1)PO(X) = τ2.

Then pcl(ω2,1)({
√
2}) = {

√
2} and pcl(2,1)({

√
2}) = X.

Definition 3.8. A point x ∈ X is said to be a pre-(ωr, s)-θt-accumulation
(resp. (r, s)-θt-pre-accumulation) point of a subset A of a bitopological space X
if pclωt(U)∩A ̸= ∅ (resp. pclt(U)∩A ̸= ∅) for every U ∈ (r, s)PO(X,x). The set
of all pre-(ωr, s)-θt-accumulation (resp. (r, s)-θt-pre-accumulation) points of A
is called the pre-(ωr, s)-θt-closure (resp. (r, s)-θt-preclosure) of A and is denoted
by p(ωr,s)clθt(A) (resp. (r, s)pclθt(A)). A subset A of a bitopological space X is
said to be pre-(ωr, s)-θt-closed (resp. (r, s)θt-preclosed set) if p(ωr,s)clθt(A) = A
(resp. (r, s)pclθt(A) = A). The complement of a pre-(ωr, s)-θt-closed set (resp.
(r, s)θt-preclosed set) is called pre-(ωr, s)-θt-open set (resp. (r, s)θt-preopen
set).
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Lemma 3.9. A subset A of space X is a pre-(ωr, s)-θt-open if and only if for
each x ∈ A, there exists V ∈ (r, s)PO(X,x) such that pclωt(V ) ⊂ A.

Proof. Let A be a pre-(ωr, s)-θt-open set and x ∈ A. Then X−A is pre-(ωr, s)-
θt-closed and so for each x ∈ A, there exists a V ∈ (r, s)PO(X,x) such that
pclωt

(V ) ∩ (X −A) = ∅ and thus pclωt
(V ) ⊂ A. □

Conversely, suppose the condition does not hold. Then there exists an x ∈ A
such that pclωt(V ) ̸⊂ A for all V ∈ (r, s)PO(X,x). Thus pclωt(V )∩(X−A) ̸= ∅
for all V ∈ (r, s)PO(X,x) and so x is a pre-(ωr, s)-θt-accumulation point of
X −A. Hence X −A is not pre-(ωr, s)-θt-closed.

Now we state following theorem:

Theorem 3.10. Let A and B be any subsets of a space X. Then the following
properties hold:

(a) (r, s)θt-preclosed sets are pre-(ωr, s)-θt-closed sets,
(b) p(ωr,s)clθt(A) ⊂ (r, s)pclθt(A),
(c) if A ⊂ B, then p(ωr,s)clθt(A) ⊂ p(ωr,s)clθt(B),
(d) intersection of an arbitrary family of pre-(ωr, s)-θt-closed sets is pre-

(ωr, s)-θt-closed in X.

Proof. Proof of (a), (b), (c) are straight forward. So we prove (d) only.
(d) Let {Aα : α ∈ ∆} be a family of pre-(ωr, s)-θt-closed sets. Let x ∈

p(ωr,s)clθt(∩α∈∆(Aα)). Then for all U ∈ (r, s)PO(X,x), ∅ ̸= (∩α∈∆(Aα)) ∩
pclωt(U) = ∩α∈∆(Aα ∩ pclωt(U)). So for each α ∈ ∆, Aα ∩ pclωt(U) ̸= ∅. Thus
x ∈ p(ωr,s)clθt(Aα) = Aα for each α ∈ ∆ and hence x ∈ ∩α∈∆(Aα). Thus
∩α∈∆(Aα) is pre-(ωr, s)-θt-closed in X. □

The following example shows that the converse of Theorem 3.9(a) is not true
and so p(ωr,s)clθt(A) ̸= (r, s)pclθt(A).

Example 3.11. Consider the same bitopological space X as in Example 3.7.
Then τω2 = Pω2O(X) = P (X) and (2, 1)PO(X) = (2)PO(X) = τ2. Then

pclω2({
√
2}) = {

√
2} and pcl2({

√
2}) = X and thus p(ω2,1)clθ2(Q) = Q and

(2, 1)pclθ2(Q) = X. So Q is a pre-(ω2, 1)-θ2-closed set but not (2, 1)θ2-preclosed
set in the bitopological space X.

4. P t
(ωr,s)

-closed spaces

Definition 4.1. A subset G of a bitopological space X is called P t
(ωr,s)

-closed

(resp. P t
(r,s)-closed) relative to X if every (r, s)-preopen cover of X has a finite

subfamily whose pre-ωt-closures (resp. t-preclosures) cover G. If G = X, then
the P t

(ωr,s)
-closed (resp. P t

(r,s)-closed) set G relative toX is called P t
(ωr,s)

-closed

(resp. P t
(r,s)-closed) bitopological space.

It is obvious to note that P t
(ωr,s)

-closedness is identical to the Pω-closedness if

the topologies on X are taken the same. Also we note that every P t
(ωr,s)

-closed
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space is P t
(r,s)-closed. But a P t

(r,s)-closed space need not be P t
(ωr,s)

-closed. For

example, the bitopological space X as in Example 3.7, is P 2
(2,1)-closed but not

P 2
(ω2,1)

-closed. In fact the (2, 1)-preopen cover {{x,
√
2}, x ∈ Q} has no finite

subfamily whose pre-ω2-closures cover X.

Definition 4.2. A filter base F (resp. a grill G) on a topological space
(X, τ1, τ2) is said to pre-(ωr, s)-θt-converge to a point x ∈ X if for each V ∈
(r, s)PO(X,x), there exists F ∈ F (resp. F ∈ G) such that F ⊂ pclωt(V ). A
filter base F is said to pre-(ωr, s)-θt-accumulate (or pre-(ωr, s)-θt-adhere) at
x ∈ X if pclωt(V )∩F ̸= ∅ for every V ∈ (r, s)PO(X,x) and every F ∈ F . The
collection of all the points of X at which the filter base F pre-(ωr, s)-θt-adheres
is denoted by p(ωr,s)-θt-adF .

Theorem 4.3. An ultrafilter base F pre-(ωr, s)-θt-converges to a point x ∈ X
if and only if it pre-(ωr, s)-θt-accumulates to the point x.

Proof. Here only to prove is that if F pre-(ωr, s)-θt-accumulates to the point
x, then F pre-(ωr, s)-θt-converges to the point x. If F does not pre-(ωr, s)-
θt-converge to the point x, there exists a V ∈ (r, s)PO(X,x) such that F ̸⊂
pclωt(V ) and so (X − pclωt(V )) ∩ F ̸= ∅ for every F ∈ F . Since F is an
ultrafilter base on X, pclωt(V ) ∈ F . Again since F pre-(ωr, s)-θt-accumulates
to the point x, pclωt(V ) ∩ F ̸= ∅ for every F ∈ F and so pclωt(V ) ∈ F . □

Theorem 4.4. For a topological space (X, τ1, τ2) the following conditions are
equivalent:

(a) X is P t
(ωr,s)

-closed,

(b) for every family {Vα : α ∈ ∆} of (r, s)-preclosed subsets such that ∩{Vα :
α ∈ ∆} = ∅, there exist α1, α2, . . . , αn ∈ ∆ such that ∩n

i=1pintωt(Vαi) = ∅,
(c) every ultrafilter base pre-(ωr, s)-θt-converges to some point of X,
(d) every filter base pre-(ωr, s)-θt-adheres at some point of X,
(e) every grill on X pre-ω-θt-converges to some point of X.

Proof. (a)⇔(b). Let Σ = {Vα : α ∈ ∆} be a cover of X by (r, s)-preclosed
sets such that ∩{Vα : α ∈ ∆} = ∅. Then there exists α1, α2, . . . , αk ∈ ∆ such
that ∪n

i=1pclωt(X − Vαi) = X. Hence X − ∪n
i=1pclωt(X − Vαi) = ∅ and so by

Theorem 2.1, ∩n
i=1pintωt(Vαi) = ∅.

Conversely, let {Uα : α ∈ ∆} be a family of (r, s)-preopen subsets of X
covering X. Then {X − Uα : α ∈ ∆} is a family of (r, s)-preclosed subsets of
X having empty intersection. Thus by (b), there exist α1, α2, . . . , αn ∈ ∆ such
that ∩n

i=1pintωt(X − Uαi) = ∅, i.e., by Theorem 2.1, ∪n
i=1pclωt(Uαi) = X. So

X is P t
(ωr,s)

-closed.

(b)⇒(c). Let F be an ultrafilter base on X which does not pre-(ωr, s)-
θt-converge to any point of X. Then by Theorem 4.3, F can not pre-ω-θt-
accumulate at any point of X. Thus for each x ∈ X, there are an Fx ∈ F and
a Vx ∈ (r, s)PO(X,x) such that pclωt(Vx)∩Fx = ∅ and so Fx ⊂ X−pclωt(Vx) =
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pintωt(Vx) (by Theorem 2.1). Again {X − Vx : x ∈ X} is a family of (r, s)-
preclosed subsets of X having empty intersection. But then by (b), there exists
a finite subset X0 ⊂ X such that ∩x∈X0pintωt(Vx) = ∅. Since F is a filter base
on X, there exists F0 ∈ F such that F0 ⊂ ∩x∈X0(Fx) and thus F0 = ∅, which
is a contradiction.

(c)⇒(d). Let F be any filter base on X and F0 be an ultrafilter base on X
such that F ⊂ F0. Then (c) ensures that F0 pre-(ωr, s)-θt-converges to some
point x ∈ X. Therefore for each V ∈ (r, s)PO(X,x), there exists F0 ∈ F0 such
that F0 ⊂ pclωt(V ). Now since for each F ∈ F , ∅ ̸= F0 ∩ F ⊂ pclωt(V ) ∩ F ,
pclωt(V ) ∩ F ̸= ∅ for every V ∈ (r, s)PO(X,x) and every F ∈ F . So the filter
base F pre-(ωr, s)-θt-accumulates at x ∈ X.

(c)⇒(e). Let G be a grill on X. Then Thron [30] has shown that F(G) =
{F ⊂ X : F ∩ E ̸= ∅, ∀E ∈ G} is a filter on X and there exists an ultrafilter
F such that F(G) ⊂ F ⊂ G. Let x ∈ X at which filter base F pre-(ωr, s)-θt-
converges. If possible, let G does not pre-(ωr, s)-θt-converge to x. Then there
exists V ∈ (r, s)PO(X,x) such that E ̸⊂ pclωt

(V ) and so E∩(X−pclωt
(V )) ̸= ∅

for all E ∈ G. So X−pclωt(V ) ∈ F(G) ⊂ G. Again by Theorem 4.3, pclωt(V )∩
F ̸= ∅ for every F ∈ F . Therefore pclωt

(V ) ∈ F . Hence pclωt
(V ) ∈ G, which

is a contradiction.
(e)⇒(c). Since every ultrafilter base is a grill, (c) immediately follows.
(d)⇒(b). Let {Vα : α ∈ ∆} be a family of (r, s)-preclosed subsets of X such

that ∩{Vα : α ∈ ∆} = ∅. If possible, let ∩λ∈Γpintωt(Vλ) ̸= ∅ for each finite
subset Γ of ∆. Then the family F = {∩{pintωt(Vγ), γ ∈ Γ},Γ ⊂ ∆, card(Γ) <
N0}, where N0 is the cardinality of the set of all natural numbers is a filter
base on X. Then by (d), F pre-(ωr, s)-θt-accumulates at some point x of X.
Since {X − Vα : α ∈ ∆} is a (r, s)-preopen cover of X, x ∈ X − Vα0 for some
α0 ∈ ∆. Let G = X − Vα0 . Then G ∈ (r, s)PO(X,x) and pintωt(Vα0) ∈ F
such that pclωt(G) ∩ pintωt(Vα0) = ∅, which is a contradiction. □

Definition 4.5. A bitopological space X is called pre-(ωr, s)t-regular if for
each x ∈ X and U ∈ (r, s)PO(X,x), there exists a V ∈ (r, s)PO(X,x) such
that clωt(V ) ⊂ U .

Theorem 4.6. For a pre-(ωr, s)t-regular bitopological space X, the following
two conditions are equivalent:

(i) X is P t
(ωr,s)

-closed,

(ii) every cover of X by pre-(ωr, s)-θt-open sets of X has a finite subcover.

Proof. (i)⇒(ii). Let X be P t
(ωr,s)

-closed and Σ be any cover of X by pre-

(ωr, s)-θt-open sets of X. Then for each x ∈ X, there exists an Ux ∈ Σ
and so Theorem 3.9 ensures the existence of a Vx ∈ (r, s)PO(X,x) such that
pclωt(Vx) ⊂ clωt(Vx) ⊂ Ux. Since {Vx : x ∈ X} is a cover of X by the (r, s)-
preopen sets of X, there exist finite number of points x1, x2, . . . , xk ∈ X such
that X = ∪k

i=1pclωt(Vxi) and so X = ∪k
i=1Uxi . Hence {Uxi : x ∈ X, i =

1, 2, . . . , k} is the required finite subcover of Σ.
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(ii)⇒(i). Let X be a (ωr, s)t-regular bitopological space. Consider Ω be
a cover of X by (r, s)-preopen sets of X. Let x ∈ X and x ∈ Ux for some
Ux ∈ Ω. Since X is pre-(ωr, s)t-regular, there exists Vx ∈ (r, s)PO(X,x) such
that pclωt(Vx) ⊂ clωt(Vx) ⊂ Ux. Then by Lemma 3.9 for each x ∈ X, Ux is
pre-(ωr, s)-θt-open set of X. Thus by (ii), there exist x1, x2, . . . , xk ∈ X such
that X = ∪k

i=1Uxi ⊂ ∪k
i=1pclωt(Uxi). □

Theorem 4.7. For a pre-(ωr, s)t-regular bitopological space X, the following
two conditions are equivalent:

(i) X is P t
(ωr,s)

-closed,

(ii) every family of pre-(ωr, s)-θt-closed subsets of X with finite intersection
property has a nonempty intersection.

Proof. (i)⇒(ii). Let X be P t
(ωr,s)

-closed and {Vα : α ∈ ∆} be a family of pre-

(ωr, s)-θt-closed subsets of X with finite intersection property having empty
intersection. Then {X −Vα : α ∈ ∆} is a cover of X by a family of pre-(ωr, s)-
θt-open subsets of X. Then Theorem 4.6 ensures the existence of a finite subset
∆0 of ∆ such that {X − Vα : α ∈ ∆0} covers X and so ∩{Vα : α ∈ ∆0} = ∅,
which is a contradiction.

(ii)⇒(i). Let X be a pre-(ωr, s)t-regular bitopological space. If X be not
P t
(ωr,s)

-closed, Theorem 4.6 ensures the existence of a cover {Uα : α ∈ ∆} of

X by a family of pre-(ωr, s)-θt-open subsets of X without any finite subcover.
Then {X − Uα : α ∈ ∆} is a family of pre-(ωr, s)-θt-closed subsets of X with
finite intersection property. Therefore by the hypothesis (ii), ∩{X − Uα : α ∈
∆} ≠ ∅ and so ∪{Uα : α ∈ ∆} ̸= X, which is a contradiction. □

As an application of Theorem 4.7, we prove the following “fixed set theorem”
for multifunction:

Theorem 4.8. Let X be a P t
(ωr,s)

-closed bitopological space and Ω : X → X

be any multifunction preserving pre-(ωr, s)-θt-closed subsets to pre-(ωr, s)-θt-
closed subsets. Then there exists a subset K ⊂ X such that Ω(K) = K.

Proof. Clearly, Γ = {G ⊂ X : Ω(G) ⊂ G,G ̸= ∅, G is pre-(ωr, s)-θt-closed} is a
totally order set under the set inclusion. Theorem 3.10(d) implies that every
subfamily of Γ has a lower bound and hance Zorns Lemma implies that there is
a minimal element K of Γ. Since the multifunction Ω preserves pre-(ωr, s)-θt-
closed subsets to pre-(ωr, s)-θt-closed subsets and K is minimal, K ⊂ Ω(K) ⊂
K and hance Ω(K) = K. □

Definition 4.9. A point x ∈ X is called pre-(ωr, s)-θt-complete adherent point
of a subset A of X if for each pre-(ωr, s)-θt-open set U containing x, card(A ∩
U) = card(A).

Definition 4.10. A net (xλ)λ∈Υ (where Υ is a directed set) on a bitopological
space X is called pre-(ωr, s)-θt-adheres at a point x ∈ X if for every U ∈
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(r, s)PO(X,x) and for every λ ∈ Υ, there exists µ(⪰ λ) ∈ Υ such that xµ ∈
pclωt(U).

Theorem 4.11. For a pre-(ωr, s)t-regular bitopological space X, the following
three statements are equivalent:

(i) X is P t
(ωr,s)

-closed,

(ii) every net (xλ)λ∈Υ, where Υ is a well-ordered index set pre-(ωr, s)-θt-
adheres at a point in X,

(iii) every infinite subset A of X has a pre-(ωr, s)-θt-complete adherent point
in X.

Proof. (i)⇒(ii). LetX be P t
(ωr,s)

-closed and (xλ)λ∈Υ, where Υ is a well-ordered

index set be a net on X. If possible, let (xλ)λ∈Υ does not pre-(ωr, s)-θt-adhere
at any point of X. So for each x ∈ X, there exists an Ux ∈ (r, s)PO(X,x) and
a λ(x) ∈ Υ such that xµ ̸∈ pclωt(Ux) for all µ(⪰ λ(x)) ∈ Υ. Since {Vx : x ∈ X}
forms a cover of X by (r, s)-preopen sets of X, there exist finite number of
points x1, x2, . . . , xk ∈ X such that X = ∪k

i=1pclωt(Uxi). Consider an η ∈ Υ
such that η ⪰ λ(xi) for all i = 1, 2, . . . , n. Then for each i = 1, 2, . . . , n,
xµ ̸∈ pclωt(Uxi) for all µ ⪰ η, which is a contradiction.

(ii)⇒(iii). Let A be an infinite subset of X. Then A can be well-ordered by
some minimal well-ordering ⪯. Thus A may be thought as a net with a well-
ordered index set as domain. Then by (ii), the net A pre-(ωr, s)-θt-adheres at
a point x ∈ X. Now consider an U ∈ (r, s)PO(X,x). Since X is pre-(ωr, s)t-
regular, there exists V ∈ (r, s)PO(X,x) such that pclωt(V ) ⊂ clωt(V ) ⊂ U .
Now since net A pre-(ωr, s)-θt-adheres at a point x ∈ X, so for any λ ∈ A,
there exists µ(⪰ λ) ∈ A such that xµ ∈ pclωt(V ) ∩ A and hence card(A) =
card(A ∩ pclωt(V )) and for similar cause card(A ∩ U) = card(A ∩ pclωt(V )).
Therefore card(A∩U) = card(A). Hence x is a pre-(ωr, s)-θt-complete adherent
point of A.

(iii)⇒(i). Let X be not P t
(ωr,s)

-closed. Then Theorem 4.6 implies that X

has a cover Σ by pre-(ωr, s)-θt-open sets of X without any finite subcover. Let
ρ be the minimum of the cardinal numbers of the subcover Σ0 of Σ. Then
clearly ρ ≥ ℵ0. Let Σ0 be well-ordered by minimal well-ordering ≺. Then for
each U ∈ Σ0, card({W ∈ Σ : W ≺ U}) < ρ and so {W ∈ Σ : W ≺ U} can not
be a cover of X. Then for each U ∈ Σ0, there exists xU ∈ X − ∪{W ∈ Σ :
W ≺ U}. Now consider P = {xU : U ∈ Σ0}. Since U, V ∈ Σ0, U ̸= V implies
xU ̸= xV , card(P ) = ρ. So P is an infinite set. Now consider any x ∈ X.
Then x ∈ U0 for some U0 ∈ Σ0. Since xU ∈ U0 implies U ≺ U0. Therefore
{U ∈ Σ0 : xU ∈ U0} ⊂ {U ∈ Σ0 : U ≺ U0} and so by the minimality of ≺, we
get card({U ∈ Σ0 : xU ∈ U0}) < ρ. Thus card(A ∩ U0) < ρ = card(A). So x
can not be pre-(ωr, s)-θt-complete adherent point of A. □

5. Pre-(ωr, s)t-θf -cluster sets

Definition 5.1. Let φ : (X, τ1, τ2) → (Y, ϱ1, ϱ2) be a function. Then the pre-
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(ωr, s)t-θf -cluster set (resp. (r, s)t-θf -precluster set) of φ at the point x ∈ X

is the set P
θf
(ωr,s)t

(φ, x) = ∩{clθf (φ(pclωt(U))) : U ∈ (r, s)PO(X,x)} (resp.

P
θf
(r,s)t(φ, x) = ∩{clθf (φ(pclt(U))) : U ∈ (r, s)PO(X,x)}).
It is clear that P

θf
(ωr,s)t

(φ, x) ⊂ P
θf
(r,s)t(φ, x). The following example estab-

lishes that P
θf
(ωr,s)t

(φ, x) ̸= P
θf
(r,s)t(φ, x).

Example 5.2. Consider the same bitopological space X as in Example 3.7 and
the identity function φ : X → X. Then P θ1

(ω2,1)2
(φ,

√
2) = ∩{clθ1(φ(pclω2(U))) :

U ∈ (2, 1)PO(X,
√
2)} = ∩{clθ1(pclω2(U)) : U ∈ τ2} = ∩{clθ1(U) : U ∈ τ2} =

∩{U : U ∈ τ2} = {
√
2} and P θ1

(2,1)2(φ,
√
2) = X.

Theorem 5.3. For any function φ : (X, τ1, τ2) → (Y, ϱ1, ϱ2), following state-
ments are equivalent:

(i) y ∈ P
θf
(ωr,s)t

(φ, x),

(ii)The filter base F = {φ−1(clf (U)) : U ∈ ϱf (y)} pre-(ωr, s)-θt-adheres at
x,

(iii) There exists a grill G on X pre-(ωr, s)-θt-converging to x and y ∈
∩{clθf (φ(K)) : K ∈ G}.

Proof. (i)⇒(ii). Let y ∈ P
θf
(ωr,s)t

(φ, x). It is obvious to note that F is a filter

base on X. If possible, let the filter base F does not pre-(ωr, s)-θt-adhere at x.
Then there exist a V ∈ (r, s)PO(X,x) and an U ∈ ϱf (y) such that pclωt(V ) ∩
φ−1(clf (U)) = ∅. So φ(pclωt(V )) ∩ clf (U) = ∅. Hence y ̸∈ clθf (φ(pclωt(U))),
which is a contradiction.

(ii)⇒(iii). Consider the family G = {G ⊂ X : G ∩ F ̸= ∅ for all F ∈ F}.
We claim that G is a grill on X. It is clear that G is nonempty and does not
contained empty set. Let G ̸∈ G and H ̸∈ G. Then there exist E,F ∈ F such
that E ∩G = ∅ and F ∩H = ∅. But since F is a filter base on X, there exists
K ∈ F such that K ⊂ E ∩ F and hence K ∩ (G ∪ H) = ∅. So G ∪ H ̸∈ G.
Again G ∈ G and H ⊃ G imply H ∈ G obviously. Hence G is a grill on X. Let
now V ∈ (r, s)PO(X,x). Then by (ii), pclωt(V ) ∩ F ̸= ∅ for all F ∈ F . So
pclωt(V ) ∈ G. Hence the grill G pre-(ωr, s)-θt-converges to x. Let K ∈ G. The
definition of G implies that φ−1(clf (U)) ∩K ̸= ∅ for all U ∈ ϱf (y). Therefore
clf (U) ∩ φ(K) ̸= ∅ for all U ∈ ϱf (y). So y ∈ clθf (φ(K)) for all K ∈ G.

(iii)⇒(i). Let U ∈ (r, s)PO(X,x). Then (iii) ensures the existence of a K ∈
G such that K ⊂ pclωt(U) and y ∈ clθf (φ(K)). Therefore y ∈ clθf (φ(pclωt(U)).

□
Theorem 5.4. Let (Y, ϱ1, ϱ2) be a pairwise (r, f)-Urysohn space. Then for
some bitopological space (X, τ1, τ2), and for some function φ : (X, τ1, τ2) →
(Y, ϱ1, ϱ2), P

θf
(ωr,s)r

(φ, x) at every point x ∈ X is degenerate.

Proof. Let (Y, ϱ1, ϱ2) be a pairwise (r, f)-Urysohn space. If the theorem does
not hold, the identity function I : Y → Y , there exists y ∈ Y such that
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P
θf
(ωr,s)r

(φ, y) is not degenerate. So there exists y0( ̸= y) ∈ Y such that y0 ∈
P

θf
(ωr,s)r

(φ, y). Then for each Uy ∈ (r, s)PO(Y, y) and Uy0 ∈ ϱf (y0) such that

pclωr (Uy) ∩ (clf (Uy0)) ̸= ∅. Since ϱr ⊂ P (ωr, s)O(X), clr(Uy) ∩ (clf (Uy0)) ̸= ∅
for each Uy ∈ ϱr(y) and for each Uy0 ∈ ϱf (y0), which is a contradiction. □

Definition 5.5. A function φ : (X, τ1, τ2) → (Y, ϱ1, ϱ2) is called pre-(ωr, s)t-
θf -irresolute if clf (φ(V )) ⊂ φ(pclωt(V )) for every V ⊂ X.

Definition 5.6. A function φ : (X, τ1, τ2) → (Y, ϱ1, ϱ2) is called (r, s)f -preopen
if the image of every (r, s)-preopen set of X is f -open in Y .

Theorem 5.7. Let φ : (X, τ1, τ2)→(Y, ϱ1, ϱ2) be any pre-(ωr, s)t-θf -irresolute,
(r, s)f -preopen surjection whose pre-(ωr, s)t-θf -cluster set at every point x ∈ X
is degenerate. Then Y is f -Urysohn space.

Proof. Let y1, y2 ∈ Y and y1 ̸= y2. Since φ is surjective, there exists x1, x2 ∈
X such that φ(x1) = y1 and φ(x2) = y2. The degeneracy of P

θf
(ωr,s)t

(φ, x1)

implies that φ(x2) ̸∈ P
θf
(ωr,s)t

(φ, x1). So by Theorem 5.3(ii), there exist Vx2 ∈
(r, s)PO(X,x2) and Uy1 ∈ ϱf (y1) such that pclωt(Vx2)∩φ−1(clf (Uy1)) = ∅ i.e.,
φ(pclωt(Vx2))∩ clf (Uy1) = ∅. Thus clf (φ(Vx2))∩ clf (Uy1) = ∅. So the space Y
is f -Urysohn. □

Definition 5.8. A function φ : (X, τ1, τ2) → (Y, ϱ1, ϱ2) is called strongly pre-
(ωr, s)t-θf -continuous if for each x ∈ X and for each U ∈ ϱf (φ(x)), there exists
V ∈ (r, s)PO(X,x) such that φ(pclωt(V )) ⊂ U .

Theorem 5.9. A space (Y, ϱ1, ϱ2) is f-Hausdorff if and only if for each space
(X, τ1, τ2) and for any pre-(ωr, s)t-θf -continuous surjection φ : (X, τ1, τ2) →
(Y, ϱ1, ϱ2) pre-(ωr, s)t-θf -cluster set at every point x ∈ X is degenerate.

Proof. Let Y be f -Hausdorff and for any X, φ : (X, τ1, τ2) → (Y, ϱ1, ϱ2) be
a strongly pre-(ωr, s)t-θf -continuous surjection. Let x ∈ X and y ∈ Y with
y ̸= φ(x). Since φ is a strongly pre-(ωr, s)t-θf -continuous surjection, for each
U ∈ ϱf (φ(x)), there exists V ∈ (r, s)PO(X,x) such that φ(pclωt(V )) ⊂ U .

Now P
θf
(ωr,s)t

(φ, x) = ∩{clθf (φ(pclωt(V ))) : V ∈ (r, s)PO(X,x)} ⊂ ∩{clθf (U) :

U ∈ ϱf (φ(x))} = ∩{clf (U) : U ∈ ϱf (φ(x))}. Again since Y is f -Hausdorff,
there exist disjoint sets Q1 ∈ ϱf (φ(x)) and Q2 ∈ ϱf (y) and so clf (Q1)∩Q2 = ∅.
Hence y ̸∈ clf (Q1) and so y ̸∈ P

θf
(ωr,s)t

(φ, x). □

Conversely, let for each space (X, τ1, τ2) and for any strongly pre-(ωr, s)t-θf -

continuous surjection φ : (X, τ1, τ2) → (Y, ϱ1, ϱ2), P
θf
(ωr,s)t

(φ, x) is degenerate

for each x ∈ X. Let y1, y2 be any two distinct points of Y . Then there
exist two points x1, x2 ∈ X such that y1 = φ(x1) and y2 = φ(x2). The

degeneracy of P
θf
(ωr,s)t

(φ, x1) implies that y2 ̸∈ P
θf
(ωr,s)t

(φ, x1). Hence there exist

V ∈ (r, s)PO(X,x1) and U ∈ ϱf (y2) such that φ(pclωt(V )) ∩ clf (U) = ∅ and
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so φ(pclωt(V )) ⊂ Y −clf (U). Therefore Y −clf (U) and U are required disjoint
f -open sets containing y1 and y2 respectively and making Y as a f -Hausdorff
space.

Theorem 5.10. Let the bitopological space (X, τ1, τ2) be f -almost regular and
for a space (X, τ1, τ2), φ : (X, τf ) → (Y, ϱf ) be a θ-closed map. If φ−1(y) is

θf -closed in X for each y ∈ Y and τr is finer than τf , then P
θf
(ωr,s)f

(φ, x) is

degenerate for each x ∈ X.

Proof. Since every f -open set is a pre-ωf -open set of X, P
θf
(ωr,s)f

(φ, x) =

∩{clθf (φ(pclωf
(V ))) : V ∈ (r, s)PO(X,x)} ⊂ ∩{clθf (φ(clf (V ))) : V ∈ (r, s)PO

(X,x)} ⊂ ∩{clθf (φ(clθf (V ))) : V ∈ (r, s)PO(X,x)}. Since X is f -almost regu-
lar and φ : (X, τf ) → (Y, ϱf ) is a θ-closed map, clθf (φ(clθf (V )) = φ(clθf (V )) for

each V ∈(r, s)PO(X,x). So P
θf
(ωr,s)f

(φ, x)⊂∩{φ(clθf (V )) :V ∈(r, s)PO(X,x)}.
Let x ∈ X and y ∈ Y with y ̸= φ(x). Then θf -closedness of φ−1(y) en-
sures the existence of a G ∈ τf (x) such that clf (G) ∩ {φ−1(y)} = ∅ and then
the f -openness of G gives φ(clf (G)) ∩ {y} = φ(clθf (G)) ∩ {y} = ∅. Since

τf ⊂ τr ⊂ (r, s)PO(X,x), y ̸∈ P
θf
(ωr,s)f

(φ, x). □

Theorem 5.11. Let space (X, τ1, τ2) be f -almost regular f -Hausdorff and for
a space (X, τ1, τ2), φ : (X, τf ) → (Y, ϱf ) be a θ-closed injection. If τr is finer

than τf , then P
θf
(ωr,s)f

(φ, x) is degenerate for each x ∈ X.

Proof. The f -almost regularity of X and θ-closedness of φ (as in Theorem

5.10) imply that P
θf
(ωr,s)f

(φ, x) ⊂ ∩{φ(clθf (V )) : V ∈ (r, s)PO(X,x)}. Let

any x′ ∈ X with x ̸= x′. Since X is f -Hausdorff, there exist H ∈ τf (x) ⊂
τr(x) ⊂ (r, s)PO(X,x) such that x′ ̸∈ clθf (H) and so φ(x′) ̸∈ φ(clθf (H)).

Hence φ(x′) ̸∈ P
θf
(ωr,s)f

(φ, x). □

Definition 5.12. Let Ω : (X, τ1, τ2) → (Y, ϱ1, ϱ2) be a multifunction. Then

the pre-(ωr, s)t-θf -cluster set of Ω at the point x ∈ X is the set P
θf
(ωr,s)t

(Ω, x) =

∩{clθf (Ω(pclωt(U))) : U ∈ (r, s)PO(X,x)}. For any M ⊂ X, the symbol

P
θf
(ωr,s)t

(Ω,M) is the set ∪{P θf
(ωr,s)t

(Ω, x) : x ∈ M}.

Definition 5.13. A multifunction Ω : (X, τ1, τ2) → (Y, ϱ1, ϱ2) is said to
have pre-(ωr, s)t-θf -closed graph if for each (x, y) ̸∈ G(Ω), there exist U ∈
(r, s)PO(X,x) and V ∈ ϱf (y) such that (pclωt(U)× clf (V )) ∩G(Ω) = ∅.

Theorem 5.14. For any multifunction Ω : (X, τ1, τ2) → (Y, ϱ1, ϱ2), following
two conditions are equivalent:

(a) P
θf
(ωr,s)t

(Ω, x) = Ω(x) for each x ∈ X,

(b) Ω has pre-(ωr, s)t-θf -closed graph.
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Proof. (a)⇒(b). Let (x, y) ̸∈ G(Ω). Then y ̸∈ Ω(x). Hence (a) ensures the
existence of U ∈ (r, s)PO(X,x) and V ∈ ϱf (y) such that Ω(pclωt(U))∩clf (V ) =
∅. Thus (pclωt(U)× clf (V ))∩G(Ω) = ∅. So Ω has pre-(ωr, s)t-θf -closed graph.

(b)⇒(a). Let Ω have pre-(ωr, s)t-θf -closed graph. Let y ̸∈ Ω(x). Then
(x, y) ̸∈ G(Ω). Since Ω has pre-(ωr, s)t-θf -closed graph, there exist U ∈
(r, s)PO(X,x) and V ∈ ϱf (y) such that (pclωt(U) × clf (V )) ∩ G(Ω) = ∅ and

hence Ω(pclωt(U))∩clf (V ) = ∅. Thus y ̸∈ P
θf
(ωr,s)t

(Ω, x) and so P
θf
(ωr,s)t

(Ω, x) =

Ω(x). □

Theorem 5.15. If a multifunction Ω : (X, τ1, τ2) → (Y, ϱ1, ϱ2) has θ-closed

graph in the product space (X, τf ) × (Y, ϱf ), then P
θf
(ωr,s)f

(Ω, x) = Ω(x) for

each x ∈ X.

Proof. Let x ∈ X and y ∈ P
θf
(ωr,s)f

(Ω, x). Then for each U ∈ (r, s)PO(X,x)

and for each V ∈ ϱf (y), Ω(pclωf
(U))∩clf (V ) ̸= ∅ and so clf (U)∩Ω−(clf (V )) ⊃

pclωf
(U)∩Ω−(clf (V )) ̸= ∅. Hence in particular there exist open setsM ∈ τf (x)

and N ∈ ϱf (y) such that clf (M)∩Ω−(clf (N)) ̸= ∅ and so clf (M×N)∩G(Ω) =
(clf (M)× clf (N))∩G(Ω) ̸= ∅. So (x, y) ∈ clθ(G(Ω)) = G(Ω). Hence y ∈ Ω(x).

Hence P
θf
(ωr,s)f

(Ω, x) = Ω(x). □

Theorem 5.16. If a bitopological space X satisfies any one of the following
two conditions:

(a) For any bitopological space (Y, ϱ1, ϱ2) and any multifunction Ω:(X, τ1, τ2)

→ (Y, ϱ1, ϱ2), ∩{r-clθt(Ω(U)) : U ∈ (r, s)PO(X,Q)} ⊂ P θt
(ωr,s)t

(Ω, Q) for each

pre-(ωr, s)-θt-closed subset Q of X,
(b) for any any bitopological space (Y, ϱ1, ϱ2) and any multifunction Ω :

(X, τ1, τ2)→(Y, ϱ1, ϱ2), ∩{p(ωr,s)clθt(Ω(U)) : U ∈(r, s)PO(X,Q)} ⊂P θt
(ωr,s)t

(Ω,

Q) for each pre-(ωr, s)-θt-closed subset Q of X, then X is P t
(ωr,s)

-closed.

Proof. Since for any subset A ⊂ X, p(ωr,s)clθt(Ω(A)) ⊂ r-clθt(Ω(A)), (a) im-
plies (b). Now let (b) satisfies and F be a filter base. Consider a point q ̸∈ X
and the set Y = X ∪ {q}. Then the family ϱ1 = ϱ2 = P (X) ∪ {U ⊂ Y : q ∈ U
and F ∈ U for some F ∈ F} is a topology on Y [15]. Then for the iden-

tity function φ : (X, τ1, τ2) → (Y, ϱ1, ϱ1), we shall show that P θt
(ωr,s)t

(φ,X) =

p(ωr,s)clθt(X). Here (b) implies that P θt
(ωr,s)t

(φ,X) ⊃ ∩{p(ωr,s)clθt(φ(U)) : U ∈
(r, s)PO(Y,X)} = ∩{p(ωr,s)clθt(U) : U ∈ (r, s)PO(Y,X)} = p(ωr,s)clθt(X)(in

(Y, ϱ1, ϱ1)). To show P θt
(ωr,s)t

(φ,X) ⊂ p(ωr,s)clθt(X), it is sufficient to prove

that q ∈ p(ωr,s)clθt(X) (in (Y, ϱ1, ϱ1)). It is clear that {q} ̸∈ δY . Again we note
that intr(cls({q})) = ∅ and so {q} ̸∈ (r, s)PO(Y, p). Thus pclωt(G) ∩ X ̸= ∅
for every G ∈ (r, s)PO(Y, q) and hence q ∈ p(ωr,s)clθt(X). Therefore q ∈
P θt
(ωr,s)t

(φ, x) for some x ∈ X. Now consider F ∈ F and V ∈ (r, s)PO(X,x).

Since Y − (F ∪ {q}), F ∪ {q} ∈ ϱt, clt(F ∪ {q}) = F ∪ {q}. Again since

q ∈ P θt
(ωr,s)t

(φ, x), Theorem 5.3 ensures that φ−1(clt(F ∪ {q})) ∩ pclωt(V ) ̸= ∅
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i.e., clt(F ∪ {q}) ∩ φ(pclωt(V )) ̸= ∅. Therefore pclωt(V ) ∩ F = φ(pclωt(V )) ∩
(F ∪ {q}) = φ(pclωt(V )) ∩ clt(F ∪ {q}) ̸= ∅. Hence by the Theorem 4.4, X is
P t
(ωr,s)

-closed. □
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