$P_{(\omega_{\rm r},{\rm s})}^{\rm t}$ -CLOSED SPACES AND PRE- $(\omega_{\rm r},{\rm s})$ t- θ_f -CLUSTER SETS

BIN MOSTAKIM UZZAL AFSAN AND CHANCHAL KUMAR BASU

ABSTRACT. Using (r, s)-preopen sets [14] and pre- ω_t -closures [6], a new kind of covering property $P_{(\omega_r,s)}^t$ -closedness is introduced in a bitopological space and several characterizations via filter bases, nets and grills [30] along with various properties of such concept are investigated. Two new types of cluster sets, namely pre- $(\omega_r, s)t$ - θ_f -cluster sets and (r, s)t- θ_f -precluster sets of functions and multifunctions between two bitopological spaces are introduced. Several properties of pre- $(\omega_r, s)t$ - θ_f -cluster sets, some new characterizations of some separation axioms in topological spaces or in bitopological spaces are obtained. A sufficient condition for $P_{(\omega_r,s)}^t$ -closedness has also been established in terms of pre- $(\omega_r, s)t$ - θ_f -cluster sets.

1. Introduction

Ever since the introduction of bitopological spaces by J. C. Kelly [17] in the year 1963, many topologists have introduced and investigated various concepts in bitopological spaces and also generalized certain existing topological properties. Because of having various applications, now a days, it has become a mature field of mathematical activity. Topologists are often keen in investigating properties closely related to compactness using certain new accessories which have been developed recently. The notion of ω -open sets introduced by H. Z. Hdeib [11] has been studied by a good number of researchers in recent times. Contributions of Noiri, Omari and Noorani [24, 25], Omari and Noorani [26, 27], Zoubi and Nashef [3] and C. K. Basu and B. M. Uzzal Afsan [6] in the arena of ω -open sets and associated concepts are worth to be mentioned. In this paper, in Section 3, we introduce pre- (ω_r, s) -open sets and allied concepts in bitopological spaces which have been developed in the subsequent sections. In

O2011 The Korean Mathematical Society

Received January 11, 2010.

 $^{2010\} Mathematics\ Subject\ Classification.\ 54A10,\ 54E55,\ 54D20,\ 54A20,\ 54C99,\ 54C60.$

Key words and phrases. pre- ω -closure, θ -closure, pre- (ω_r, s) -open, $P^t_{(\omega_r, s)}$ -closed, $P^t_{(r,s)}$ closed, $(\omega_r, s)t$ -regular, pre- (ω_r, s) - θ_t -complete adherent, pre- $(\omega_r, s)t$ - θ_f -cluster set, (r, s)t- θ_f -precluster set, pre- $(\omega_r, s)t$ - θ_f -irresolute, strongly pre- $(\omega_r, s)t$ - θ_f -continuous, (r, s)f-preopen, pairwise (r, s)-Urysohn, almost regular.

Section 4, a new type of covering property $P_{(\omega_r,s)}^t$ -closedness is introduced in a bitopological space (X, τ_1, τ_2) using (r, s)-preopen sets [14] and pre- ω_t -closures (=pre- ω -closures with respect to the topology τ_t) [6]. Such concept is identical to the P_{ω} -closedness [6] if the topologies on X are taken the same. Several characterizations via filter bases, nets and grills [30] along with various properties of such concept are investigated. Further, in the last section, two new types of cluster sets, namely pre- $(\omega_r, s)t$ - θ_f -cluster sets (resp. pre- $(\omega_r, s)t$ - θ_f -cluster sets) of functions and multifunctions have been introduced between two bitopological spaces in terms of pre- ω -closure [6] (resp. preclosure [21]), θ -closure [31] and (r, s)-preopen sets [14]. Finally, a sufficient condition for $P_{(\omega_r,s)}^t$ -closedness in terms of pre- $(\omega_r, s)t$ - θ_f -cluster sets has been given.

2. Prerequisites

Let (X, τ) be a topological space and $A \subset X$. Then a point $x \in X$ is called a condensation point of A if for each open set U containing $x, A \cap U$ is uncountable. A set A is called ω -closed [11] if it contains all of its condensation points and the complement of an ω -closed set is called an ω -open set [11] or equivalently, $A \subset X$ is ω -open if and only if for each $x \in A$ there exists an open set U containing x such that U - A is countable. Throughout this paper, spaces (X, τ_1, τ_2) and $(Y, \varrho_1, \varrho_2)$ (or simply X and Y) represent non-empty bitopological spaces and r, s, t and f are indices varying over the set $\{1, 2\}$. The set of all ω -open sets of space X when the topology τ_r is considered is denoted by τ_{ω_r} . It is to be noted that τ_{ω_r} is a topology on X finer than τ_r [11]. A subset A of a topological space X is called semi-open [18] (resp. regular open, α -open [23], preopen [21], β -open [2], semi- ω -open [24], α - ω -open [24], pre- ω -open [24], β - ω -open [24]) if $A \subset cl(int(A))$ (resp. A = int(cl(A))), $A \subset int(cl(int(A))), A \subset int(cl(A)), A \subset cl(int(cl(A))), A \subset cl(int_{\omega}(A))),$ $A \subset int_{\omega}(cl(int_{\omega}(A))), A \subset int_{\omega}(cl(A)) \text{ and } A \subset cl(int_{\omega}(cl(A)))).$ The θ closure of a subset A of a topological space (X, τ) is the set θ -cl $(A) = \{x \in X :$ $cl(U) \cap A \neq \emptyset, \forall U \in \tau$ [31]. The pre- ω -closure of a subset A of a topological space (X, τ) is the intersection of all the pre- ω -closed subsets of X containing A [6]. The (r, s)- θ -closure of a subset A of a bitopological space (X, τ_1, τ_2) is the set $r - cl_{\theta_s}(A) = \{x \in X : cl_s(U) \cap A \neq \emptyset, \forall U \in \tau_r\}$ [16]. The closure (resp. interior, θ -closure, ω -interior [11], ω -closure [11], pre- ω -interior [6], pre- ω -closure [6]) of a subset A of a space X with respect to the topology τ_r (where r = 1, 2 (read as r-closure (resp. r-interior, θ_r -closure, ω_r -interior, ω_r -closure, pre- ω_r -interior, pre- ω_r -closure)) are denoted by $cl_r(A)$ (resp. $int_r(A)$, $cl_{\theta_r}(A)$, $int_{\omega_r}(A), \ cl_{\omega_r}(A), \ pint_{\omega_r}(A), \ pcl_{\omega_r}(A)).$ A subset A of a bitopological space X is called (r, s)-regular open [9] (resp. (r, s)-preopen [14]) if $A = int_r(cl_s(A))$ (resp. $A \subset int_r(cl_s(A))$). The family of all (r, s)-preopen (resp. (r, s)-preclopen i.e., (r, s)-preclosed as well as (r, s)-preopen and (r, s)-regular open) subsets of X is denoted by (r, s)-PO(X) (resp. (r, s)-PCO(X) and (r, s)-RO(X)). The family of all (r, s)-preopen (resp. (r, s)-preclopen i.e., (r, s)-preclosed as well

as (r, s)-preopen and (r, s)-regular open) subsets of X containing $x \in X$ is denoted by (r, s)PO(X, x) (resp. (r, s)PCO(X, x) and (r, s)RO(X, x)) and the family of all (r, s)-preopen subsets of X containing a subset $K \subset X$ is denoted by (r, s)PO(X, K). The family of all preopen sets in the topological space (X, τ_r) is denoted by (r)PO(X). (r, s)pcl(A) is the intersection of all (r, s)-preclosed subsets of X containing A [14]. A topological space (X, τ) is called almost regular [28] if for every regular closed set A in X and for each $x \in A$, there exist disjoint open sets M and N containing x and V respectively. It is well known that in an almost regular space X, θ -cl(A) is θ -closed for each $A \subset X$. A bitopological space X is said to satisfy f-T (where f = 1, 2) property if (X, τ_f) satisfy the property T. A bitopological space X is called pairwise (r, f)-Urysohn [19] if each pair of distinct points $x, y \in X$, there exist $U \in \tau_r(x)$ and $V \in \tau_f(y)$ such that $cl_r(U) \cap cl_f(V) = \emptyset$.

Thron [30] has defined a grill as a non-empty family \mathcal{G} of non-empty subsets of X satisfying (a) $A \in \mathcal{G}$ and $A \subset B \Rightarrow B \in \mathcal{G}$ and (b) $A \cup B \in \mathcal{G} \Rightarrow$ either $A \in \mathcal{G}$ or $B \in \mathcal{G}$. Thron [30] also has shown that $\mathcal{F}(\mathcal{G}) = \{A \subset X :$ $A \cap F \neq \emptyset, \forall F \in \mathcal{G}\}$ is a filter on X and there exists an ultrafilter \mathcal{F} such that $\mathcal{F}(\mathcal{G}) \subset \mathcal{F} \subset \mathcal{G}$.

The results of the following theorem are used frequently in this paper.

Theorem 2.1 ([6]). For subsets A, B of a topological space X, following properties hold:

(a) $pcl_{\omega}(A) \subset pcl(A)$ and $pcl_{\omega}(A) \subset cl_{\omega}(A)$.

(b) $A \subset B$ implies $pcl_{\omega}(A) \subset pcl_{\omega}(B)$ and $pint_{\omega}(A) \subset pint_{\omega}(B)$.

(c) $pcl_{\omega}(pcl_{\omega}(A)) = pcl_{\omega}(A)$ and $pint_{\omega}(pint_{\omega}(A)) = pint_{\omega}(A)$.

(d) A is pre- ω -closed if and only if $pcl_{\omega}(A) = A$.

(e) A is pre- ω -open if and only if $pint_{\omega}(A) = A$.

(f) $pcl_{\omega}(X - A) = X - pint_{\omega}(A).$

(g) $pint_{\omega}(X - A) = X - pcl_{\omega}(A).$

3. Pre- (ω_r, s) -open sets

Definition 3.1. A subset A of a bitopological space (X, τ_1, τ_2) is called pre- (ω_r, s) -open if $A \subset int_{\omega_r}(cl_s(A))$.

The complement of a pre- (ω_r, s) -open set is called a pre- (ω_r, s) -closed set.

The family of all pre- (ω_r, s) -open sets of X is denoted by $P(\omega_r, s)O(X)$ and the family of all pre- (ω_r, s) -open sets of X containing a point $x \in X$ is denoted by $P(\omega_r, s)O(X, x)$.

Remark 3.2. (i) If r = s, then every pre- (ω_r, s) -open set is pre- ω -open in (X, τ_r) .

(ii) Every (r, s)-preopen set is pre- (ω_r, s) -open, but the converse need not be true that is established with the following example.

Example 3.3. Consider the real line $X = \mathbb{R}$ with the co-countable topology τ_1 and the topology $\tau_2 = \{S \subset \mathbb{R} : \mathbb{Q} \subset S, \mathbb{Q} \text{ is the set of all rational numbers}\}$. Then the set \mathbb{N} of all positive integers is $\operatorname{pre-}(\omega_2, 1)$ -open but is not (2, 1)-preopen in the bitopological space (X, τ_1, τ_2) . In fact $int_{\omega_2}(\mathbb{N}) = \mathbb{N}$ and $int_2(cl_1(\mathbb{N})) = int_2(\mathbb{N}) = \emptyset$.

Lemma 3.4. An arbitrary union of $pre-(\omega_r, s)$ -open sets in a bitopological space X is a $pre-(\omega_r, s)$ -open set.

Proof. The proof is obvious and is thus omitted.

Definition 3.5. Let A be a subset of a bitopological space X. Then pre- (ω_r, s) -interior (resp. pre- (ω_r, s) -closure) is denoted by $pint_{(\omega_r, s)}(A)$ (resp. $pcl_{(\omega_r, s)}(A)$) and is defined as the set $pint_{(\omega_r, s)}(A) = \bigcup \{G \subset A : G \in P(\omega_r, s)O(X)\}$ (resp. $pcl_{(\omega_r, s)}(A) = \cap \{G \supset A : X - G \in P(\omega_r, s)O(X)\}$).

Theorem 3.6. For subsets A, B of a topological space X, following properties hold:

(a) $pcl_{(\omega_r,s)}(A) \subset (r,s)pcl(A)$.

(b) $A \subset B$ implies $pcl_{(\omega_r,s)}(A) \subset pcl_{(\omega_r,s)}(B)$ and $pint_{(\omega_r,s)}(A) \subset pint_{(\omega_r,s)}(B)$. (B).

(c) $pcl_{(\omega_r,s)}(pcl_{(\omega_r,s)}(A)) = pcl_{(\omega_r,s)}(A)$ and $pcl_{(\omega_r,s)}(pcl_{(\omega_r,s)}(A)) = pcl_{(\omega_r,s)}(A)$.

(d) A is pre- (ω_r, s) -closed if and only if $pcl_{(\omega_r, s)}(A) = A$.

(e) A is pre- (ω_r, s) -open if and only if $pint_{(\omega_r, s)}(A) = A$.

(f) $pcl_{(\omega_r,s)}(X-A) = X - pint_{(\omega_r,s)}(A).$

(g) $pint_{(\omega_r,s)}(X-A) = X - pcl_{(\omega_r,s)}(A).$

The reverse inclusion of the above Theorem 3.6(a) is not true in general. This fact is reflected in the following example.

Example 3.7. Consider the bitopological space $X = \mathbb{Q} \cup \{\sqrt{2}\}$ with the cocountable topology τ_1 and the topology τ_2 generated by the base $\{\{x, \sqrt{2}\} : x \in X\}$. Then $\tau_{\omega_1} = \tau_{\omega_2} = P(\omega_r, s)O(X) = P(X)$ and $(2, 1)PO(X) = \tau_2$. Then $pcl_{(\omega_2, 1)}(\{\sqrt{2}\}) = \{\sqrt{2}\}$ and $pcl_{(2, 1)}(\{\sqrt{2}\}) = X$.

Definition 3.8. A point $x \in X$ is said to be a $\operatorname{pre-}(\omega_r, s)$ - θ_t -accumulation (resp. (r, s)- θ_t -pre-accumulation) point of a subset A of a bitopological space X if $pcl_{\omega_t}(U) \cap A \neq \emptyset$ (resp. $pcl_t(U) \cap A \neq \emptyset$) for every $U \in (r, s)PO(X, x)$. The set of all $\operatorname{pre-}(\omega_r, s)$ - θ_t -accumulation (resp. (r, s)- θ_t -pre-accumulation) points of A is called the $\operatorname{pre-}(\omega_r, s)$ - θ_t -closure (resp. (r, s)- θ_t -preclosure) of A and is denoted by $p_{(\omega_r, s)}cl_{\theta_t}(A)$ (resp. $(r, s)pcl_{\theta_t}(A)$). A subset A of a bitopological space X is said to be $\operatorname{pre-}(\omega_r, s)$ - θ_t -closed (resp. $(r, s)\theta_t$ -preclosed set) if $p_{(\omega_r, s)}cl_{\theta_t}(A) = A$ (resp. $(r, s)pcl_{\theta_t}(A) = A$). The complement of a $\operatorname{pre-}(\omega_r, s)$ - θ_t -closed set (resp. $(r, s)\theta_t$ -preclosed set) (r, s) θ_t -preopen set (resp. $(r, s)\theta_t$ -preopen set).

Lemma 3.9. A subset A of space X is a pre- (ω_r, s) - θ_t -open if and only if for each $x \in A$, there exists $V \in (r, s)PO(X, x)$ such that $pcl_{\omega_t}(V) \subset A$.

Proof. Let A be a pre- (ω_r, s) - θ_t -open set and $x \in A$. Then X - A is pre- (ω_r, s) - θ_t -closed and so for each $x \in A$, there exists a $V \in (r, s)PO(X, x)$ such that $pcl_{\omega_t}(V) \cap (X - A) = \emptyset$ and thus $pcl_{\omega_t}(V) \subset A$.

Conversely, suppose the condition does not hold. Then there exists an $x \in A$ such that $pcl_{\omega_t}(V) \not\subset A$ for all $V \in (r, s)PO(X, x)$. Thus $pcl_{\omega_t}(V) \cap (X-A) \neq \emptyset$ for all $V \in (r, s)PO(X, x)$ and so x is a pre- (ω_r, s) - θ_t -accumulation point of X - A. Hence X - A is not pre- (ω_r, s) - θ_t -closed.

Now we state following theorem:

Theorem 3.10. Let A and B be any subsets of a space X. Then the following properties hold:

(a) $(r, s)\theta_t$ -preclosed sets are pre- (ω_r, s) - θ_t -closed sets,

(b) $p_{(\omega_r,s)}cl_{\theta_t}(A) \subset (r,s)pcl_{\theta_t}(A),$

(c) if $A \subset B$, then $p_{(\omega_r,s)}cl_{\theta_t}(A) \subset p_{(\omega_r,s)}cl_{\theta_t}(B)$,

(d) intersection of an arbitrary family of pre- (ω_r, s) - θ_t -closed sets is pre- (ω_r, s) - θ_t -closed in X.

Proof. Proof of (a), (b), (c) are straight forward. So we prove (d) only.

(d) Let $\{A_{\alpha} : \alpha \in \Delta\}$ be a family of pre- (ω_r, s) - θ_t -closed sets. Let $x \in p_{(\omega_r,s)}cl_{\theta_t}(\bigcap_{\alpha\in\Delta}(A_{\alpha}))$. Then for all $U \in (r,s)PO(X,x), \ \emptyset \neq (\bigcap_{\alpha\in\Delta}(A_{\alpha})) \cap pcl_{\omega_t}(U) = \bigcap_{\alpha\in\Delta}(A_{\alpha} \cap pcl_{\omega_t}(U))$. So for each $\alpha \in \Delta, A_{\alpha} \cap pcl_{\omega_t}(U) \neq \emptyset$. Thus $x \in p_{(\omega_r,s)}cl_{\theta_t}(A_{\alpha}) = A_{\alpha}$ for each $\alpha \in \Delta$ and hence $x \in \bigcap_{\alpha\in\Delta}(A_{\alpha})$. Thus $\bigcap_{\alpha\in\Delta}(A_{\alpha})$ is pre- (ω_r, s) - θ_t -closed in X.

The following example shows that the converse of Theorem 3.9(a) is not true and so $p_{(\omega_r,s)}cl_{\theta_t}(A) \neq (r,s)pcl_{\theta_t}(A)$.

Example 3.11. Consider the same bitopological space X as in Example 3.7. Then $\tau_{\omega_2} = P\omega_2 O(X) = P(X)$ and $(2,1)PO(X) = (2)PO(X) = \tau_2$. Then $pcl_{\omega_2}(\{\sqrt{2}\}) = \{\sqrt{2}\}$ and $pcl_2(\{\sqrt{2}\}) = X$ and thus $p_{(\omega_2,1)}cl_{\theta_2}(\mathbb{Q}) = \mathbb{Q}$ and $(2,1)pcl_{\theta_2}(\mathbb{Q}) = X$. So \mathbb{Q} is a pre- $(\omega_2, 1)$ - θ_2 -closed set but not $(2,1)\theta_2$ -preclosed set in the bitopological space X.

4. $P_{(\omega_n,s)}^t$ -closed spaces

Definition 4.1. A subset G of a bitopological space X is called $P_{(\omega_r,s)}^t$ -closed (resp. $P_{(r,s)}^t$ -closed) relative to X if every (r, s)-preopen cover of X has a finite subfamily whose pre- ω_t -closures (resp. t-preclosures) cover G. If G = X, then the $P_{(\omega_r,s)}^t$ -closed (resp. $P_{(r,s)}^t$ -closed) set G relative to X is called $P_{(\omega_r,s)}^t$ -closed (resp. $P_{(r,s)}^t$ -closed) bitopological space.

It is obvious to note that $P_{(\omega_r,s)}^t$ -closedness is identical to the P_{ω} -closedness if the topologies on X are taken the same. Also we note that every $P_{(\omega_r,s)}^t$ -closed

space is $P_{(r,s)}^t$ -closed. But a $P_{(r,s)}^t$ -closed space need not be $P_{(\omega_r,s)}^t$ -closed. For example, the bitopological space X as in Example 3.7, is $P_{(2,1)}^2$ -closed but not $P_{(\omega_2,1)}^2$ -closed. In fact the (2, 1)-preopen cover $\{\{x, \sqrt{2}\}, x \in \mathbb{Q}\}$ has no finite subfamily whose pre- ω_2 -closures cover X.

Definition 4.2. A filter base \mathcal{F} (resp. a grill \mathcal{G}) on a topological space (X, τ_1, τ_2) is said to pre- (ω_r, s) - θ_t -converge to a point $x \in X$ if for each $V \in (r, s)PO(X, x)$, there exists $F \in \mathcal{F}$ (resp. $F \in \mathcal{G}$) such that $F \subset pcl_{\omega_t}(V)$. A filter base \mathcal{F} is said to pre- (ω_r, s) - θ_t -accumulate (or pre- (ω_r, s) - θ_t -adhere) at $x \in X$ if $pcl_{\omega_t}(V) \cap F \neq \emptyset$ for every $V \in (r, s)PO(X, x)$ and every $F \in \mathcal{F}$. The collection of all the points of X at which the filter base \mathcal{F} pre- (ω_r, s) - θ_t -adheres is denoted by $p_{(\omega_r, s)}$ - θ_t -ad \mathcal{F} .

Theorem 4.3. An ultrafilter base \mathcal{F} pre- (ω_r, s) - θ_t -converges to a point $x \in X$ if and only if it pre- (ω_r, s) - θ_t -accumulates to the point x.

Proof. Here only to prove is that if \mathcal{F} pre- (ω_r, s) - θ_t -accumulates to the point x, then \mathcal{F} pre- (ω_r, s) - θ_t -converges to the point x. If \mathcal{F} does not pre- (ω_r, s) - θ_t -converge to the point x, there exists a $V \in (r, s)PO(X, x)$ such that $F \not\subset pcl_{\omega_t}(V)$ and so $(X - pcl_{\omega_t}(V)) \cap F \neq \emptyset$ for every $F \in \mathcal{F}$. Since \mathcal{F} is an ultrafilter base on X, $pcl_{\omega_t}(V) \in \mathcal{F}$. Again since \mathcal{F} pre- (ω_r, s) - θ_t -accumulates to the point x, $pcl_{\omega_t}(V) \cap F \neq \emptyset$ for every $F \in \mathcal{F}$ and so $pcl_{\omega_t}(V) \in \mathcal{F}$. \Box

Theorem 4.4. For a topological space (X, τ_1, τ_2) the following conditions are equivalent:

(a) X is $P_{(\omega_r,s)}^t$ -closed,

(b) for every family $\{V_{\alpha} : \alpha \in \Delta\}$ of (r, s)-preclosed subsets such that $\cap \{V_{\alpha} : \alpha \in \Delta\} = \emptyset$, there exist $\alpha_1, \alpha_2, \ldots, \alpha_n \in \Delta$ such that $\cap_{i=1}^n pint_{\omega_t}(V_{\alpha_i}) = \emptyset$,

- (c) every ultrafilter base pre- (ω_r, s) - θ_t -converges to some point of X,
- (d) every filter base pre- (ω_r, s) - θ_t -adheres at some point of X,
- (e) every grill on X pre- ω - θ_t -converges to some point of X.

Proof. (a) \Leftrightarrow (b). Let $\Sigma = \{V_{\alpha} : \alpha \in \Delta\}$ be a cover of X by (r, s)-preclosed sets such that $\cap \{V_{\alpha} : \alpha \in \Delta\} = \emptyset$. Then there exists $\alpha_1, \alpha_2, \ldots, \alpha_k \in \Delta$ such that $\cup_{i=1}^n pcl_{\omega_i}(X - V_{\alpha_i}) = X$. Hence $X - \cup_{i=1}^n pcl_{\omega_i}(X - V_{\alpha_i}) = \emptyset$ and so by Theorem 2.1, $\cap_{i=1}^n pint_{\omega_i}(V_{\alpha_i}) = \emptyset$.

Conversely, let $\{U_{\alpha} : \alpha \in \Delta\}$ be a family of (r, s)-preopen subsets of X covering X. Then $\{X - U_{\alpha} : \alpha \in \Delta\}$ is a family of (r, s)-preclosed subsets of X having empty intersection. Thus by (b), there exist $\alpha_1, \alpha_2, \ldots, \alpha_n \in \Delta$ such that $\bigcap_{i=1}^{n} pint_{\omega_t}(X - U_{\alpha_i}) = \emptyset$, i.e., by Theorem 2.1, $\bigcup_{i=1}^{n} pcl_{\omega_t}(U_{\alpha_i}) = X$. So X is $P_{(\omega_r,s)}^t$ -closed.

(b) \Rightarrow (c). Let \mathcal{F} be an ultrafilter base on X which does not pre- (ω_r, s) - θ_t -converge to any point of X. Then by Theorem 4.3, \mathcal{F} can not pre- ω - θ_t -accumulate at any point of X. Thus for each $x \in X$, there are an $F_x \in \mathcal{F}$ and a $V_x \in (r, s)PO(X, x)$ such that $pcl_{\omega_t}(V_x) \cap F_x = \emptyset$ and so $F_x \subset X - pcl_{\omega_t}(V_x) =$

140

 $pint_{\omega_t}(V_x)$ (by Theorem 2.1). Again $\{X - V_x : x \in X\}$ is a family of (r, s)-preclosed subsets of X having empty intersection. But then by (b), there exists a finite subset $X_0 \subset X$ such that $\bigcap_{x \in X_0} pint_{\omega_t}(V_x) = \emptyset$. Since \mathcal{F} is a filter base on X, there exists $F_0 \in \mathcal{F}$ such that $F_0 \subset \bigcap_{x \in X_0} (F_x)$ and thus $F_0 = \emptyset$, which is a contradiction.

 $(c) \Rightarrow (d)$. Let \mathcal{F} be any filter base on X and \mathcal{F}_0 be an ultrafilter base on X such that $\mathcal{F} \subset \mathcal{F}_0$. Then (c) ensures that \mathcal{F}_0 pre- (ω_r, s) - θ_t -converges to some point $x \in X$. Therefore for each $V \in (r, s)PO(X, x)$, there exists $F_0 \in \mathcal{F}_0$ such that $F_0 \subset pcl_{\omega_t}(V)$. Now since for each $F \in \mathcal{F}, \ \emptyset \neq F_0 \cap F \subset pcl_{\omega_t}(V) \cap F$, $pcl_{\omega_t}(V) \cap F \neq \emptyset$ for every $V \in (r, s)PO(X, x)$ and every $F \in \mathcal{F}$. So the filter base \mathcal{F} pre- (ω_r, s) - θ_t -accumulates at $x \in X$.

 $(c) \Rightarrow (e).$ Let \mathcal{G} be a grill on X. Then Thron [30] has shown that $\mathcal{F}(\mathcal{G}) = \{F \subset X : F \cap E \neq \emptyset, \forall E \in \mathcal{G}\}$ is a filter on X and there exists an ultrafilter \mathcal{F} such that $\mathcal{F}(\mathcal{G}) \subset \mathcal{F} \subset \mathcal{G}$. Let $x \in X$ at which filter base \mathcal{F} pre- (ω_r, s) - θ_t -converges. If possible, let \mathcal{G} does not pre- (ω_r, s) - θ_t -converge to x. Then there exists $V \in (r, s)PO(X, x)$ such that $E \not\subset pcl_{\omega_t}(V)$ and so $E \cap (X - pcl_{\omega_t}(V)) \neq \emptyset$ for all $E \in \mathcal{G}$. So $X - pcl_{\omega_t}(V) \in \mathcal{F}(\mathcal{G}) \subset \mathcal{G}$. Again by Theorem 4.3, $pcl_{\omega_t}(V) \cap F \neq \emptyset$ for every $F \in \mathcal{F}$. Therefore $pcl_{\omega_t}(V) \in \mathcal{F}$. Hence $pcl_{\omega_t}(V) \in \mathcal{G}$, which is a contradiction.

(e) \Rightarrow (c). Since every ultrafilter base is a grill, (c) immediately follows.

(d) \Rightarrow (b). Let $\{V_{\alpha} : \alpha \in \Delta\}$ be a family of (r, s)-preclosed subsets of X such that $\cap \{V_{\alpha} : \alpha \in \Delta\} = \emptyset$. If possible, let $\cap_{\lambda \in \Gamma} pint_{\omega_t}(V_{\lambda}) \neq \emptyset$ for each finite subset Γ of Δ . Then the family $\mathcal{F} = \{\cap \{pint_{\omega_t}(V_{\gamma}), \gamma \in \Gamma\}, \Gamma \subset \Delta, \operatorname{card}(\Gamma) < \mathcal{N}_0\}$, where \mathcal{N}_0 is the cardinality of the set of all natural numbers is a filter base on X. Then by (d), \mathcal{F} pre- (ω_r, s) - θ_t -accumulates at some point x of X. Since $\{X - V_{\alpha} : \alpha \in \Delta\}$ is a (r, s)-preopen cover of $X, x \in X - V_{\alpha_0}$ for some $\alpha_0 \in \Delta$. Let $G = X - V_{\alpha_0}$. Then $G \in (r, s)PO(X, x)$ and $pint_{\omega_t}(V_{\alpha_0}) \in \mathcal{F}$ such that $pcl_{\omega_t}(G) \cap pint_{\omega_t}(V_{\alpha_0}) = \emptyset$, which is a contradiction.

Definition 4.5. A bitopological space X is called $\operatorname{pre-}(\omega_r, s)t$ -regular if for each $x \in X$ and $U \in (r, s)PO(X, x)$, there exists a $V \in (r, s)PO(X, x)$ such that $d_{\omega_t}(V) \subset U$.

Theorem 4.6. For a pre- (ω_r, s) t-regular bitopological space X, the following two conditions are equivalent:

(i) X is $P_{(\omega_r,s)}^t$ -closed,

(ii) every cover of X by pre- (ω_r, s) - θ_t -open sets of X has a finite subcover.

Proof. (i) \Rightarrow (ii). Let X be $P_{(\omega_r,s)}^t$ -closed and Σ be any cover of X by pre-(ω_r, s)- θ_t -open sets of X. Then for each $x \in X$, there exists an $U_x \in \Sigma$ and so Theorem 3.9 ensures the existence of a $V_x \in (r, s)PO(X, x)$ such that $pcl_{\omega_t}(V_x) \subset cl_{\omega_t}(V_x) \subset U_x$. Since $\{V_x : x \in X\}$ is a cover of X by the (r, s)preopen sets of X, there exist finite number of points $x_1, x_2, \ldots, x_k \in X$ such that $X = \bigcup_{i=1}^k pcl_{\omega_t}(V_{x_i})$ and so $X = \bigcup_{i=1}^k U_{x_i}$. Hence $\{U_{x_i} : x \in X, i = 1, 2, \ldots, k\}$ is the required finite subcover of Σ . (ii) \Rightarrow (i). Let X be a $(\omega_r, s)t$ -regular bitopological space. Consider Ω be a cover of X by (r, s)-preopen sets of X. Let $x \in X$ and $x \in U_x$ for some $U_x \in \Omega$. Since X is pre- $(\omega_r, s)t$ -regular, there exists $V_x \in (r, s)PO(X, x)$ such that $pcl_{\omega_t}(V_x) \subset cl_{\omega_t}(V_x) \subset U_x$. Then by Lemma 3.9 for each $x \in X$, U_x is pre- (ω_r, s) - θ_t -open set of X. Thus by (ii), there exist $x_1, x_2, \ldots, x_k \in X$ such that $X = \bigcup_{i=1}^k U_{x_i} \subset \bigcup_{i=1}^k pcl_{\omega_t}(U_{x_i})$.

Theorem 4.7. For a pre- (ω_r, s) t-regular bitopological space X, the following two conditions are equivalent:

(i) X is $P_{(\omega_r,s)}^t$ -closed,

(ii) every family of pre- (ω_r, s) - θ_t -closed subsets of X with finite intersection property has a nonempty intersection.

Proof. (i) \Rightarrow (ii). Let X be $P_{(\omega_r,s)}^t$ -closed and $\{V_\alpha : \alpha \in \Delta\}$ be a family of pre- (ω_r, s) - θ_t -closed subsets of X with finite intersection property having empty intersection. Then $\{X - V_\alpha : \alpha \in \Delta\}$ is a cover of X by a family of pre- (ω_r, s) - θ_t -open subsets of X. Then Theorem 4.6 ensures the existence of a finite subset Δ_0 of Δ such that $\{X - V_\alpha : \alpha \in \Delta_0\}$ covers X and so $\cap\{V_\alpha : \alpha \in \Delta_0\} = \emptyset$, which is a contradiction.

(ii) \Rightarrow (i). Let X be a pre- $(\omega_r, s)t$ -regular bitopological space. If X be not $P_{(\omega_r,s)}^t$ -closed, Theorem 4.6 ensures the existence of a cover $\{U_\alpha : \alpha \in \Delta\}$ of X by a family of pre- (ω_r, s) - θ_t -open subsets of X without any finite subcover. Then $\{X - U_\alpha : \alpha \in \Delta\}$ is a family of pre- (ω_r, s) - θ_t -closed subsets of X with finite intersection property. Therefore by the hypothesis (ii), $\cap\{X - U_\alpha : \alpha \in \Delta\} \neq \emptyset$ and so $\cup\{U_\alpha : \alpha \in \Delta\} \neq X$, which is a contradiction. \Box

As an application of Theorem 4.7, we prove the following "fixed set theorem" for multifunction:

Theorem 4.8. Let X be a $P_{(\omega_r,s)}^t$ -closed bitopological space and $\Omega : X \to X$ be any multifunction preserving pre- (ω_r, s) - θ_t -closed subsets to pre- (ω_r, s) - θ_t closed subsets. Then there exists a subset $K \subset X$ such that $\Omega(K) = K$.

Proof. Clearly, Γ = {G ⊂ X : Ω(G) ⊂ G, G ≠ ∅, G is pre- $(ω_r, s)$ - $θ_t$ -closed} is a totally order set under the set inclusion. Theorem 3.10(d) implies that every subfamily of Γ has a lower bound and hance Zorns Lemma implies that there is a minimal element K of Γ. Since the multifunction Ω preserves pre- $(ω_r, s)$ - $θ_t$ -closed subsets to pre- $(ω_r, s)$ - $θ_t$ -closed subsets and K is minimal, K ⊂ Ω(K) ⊂ K and hance Ω(K) = K.

Definition 4.9. A point $x \in X$ is called pre- (ω_r, s) - θ_t -complete adherent point of a subset A of X if for each pre- (ω_r, s) - θ_t -open set U containing x, card $(A \cap U) = \text{card}(A)$.

Definition 4.10. A net $(x_{\lambda})_{\lambda \in \Upsilon}$ (where Υ is a directed set) on a bitopological space X is called pre- (ω_r, s) - θ_t -adheres at a point $x \in X$ if for every $U \in$

142

(r,s)PO(X,x) and for every $\lambda \in \Upsilon$, there exists $\mu(\succeq \lambda) \in \Upsilon$ such that $x_{\mu} \in pcl_{\omega_t}(U)$.

Theorem 4.11. For a pre- (ω_r, s) t-regular bitopological space X, the following three statements are equivalent:

(i) X is $P_{(\omega_r,s)}^t$ -closed,

(ii) every net $(x_{\lambda})_{\lambda \in \Upsilon}$, where Υ is a well-ordered index set $pre(\omega_r, s) - \theta_t$ -adheres at a point in X,

(iii) every infinite subset A of X has a pre- (ω_r, s) - θ_t -complete adherent point in X.

Proof. (i) \Rightarrow (ii). Let X be $P_{(\omega_r,s)}^t$ -closed and $(x_\lambda)_{\lambda \in \Upsilon}$, where Υ is a well-ordered index set be a net on X. If possible, let $(x_\lambda)_{\lambda \in \Upsilon}$ does not pre- (ω_r, s) - θ_t -adhere at any point of X. So for each $x \in X$, there exists an $U_x \in (r, s)PO(X, x)$ and a $\lambda(x) \in \Upsilon$ such that $x_\mu \notin pcl_{\omega_t}(U_x)$ for all $\mu(\succeq \lambda(x)) \in \Upsilon$. Since $\{V_x : x \in X\}$ forms a cover of X by (r, s)-preopen sets of X, there exist finite number of points $x_1, x_2, \ldots, x_k \in X$ such that $X = \bigcup_{i=1}^k pcl_{\omega_t}(U_{x_i})$. Consider an $\eta \in \Upsilon$ such that $\eta \succeq \lambda(x_i)$ for all $i = 1, 2, \ldots, n$. Then for each $i = 1, 2, \ldots, n$, $x_\mu \notin pcl_{\omega_t}(U_{x_i})$ for all $\mu \succeq \eta$, which is a contradiction.

(ii) \Rightarrow (iii). Let A be an infinite subset of X. Then A can be well-ordered by some minimal well-ordering \preceq . Thus A may be thought as a net with a wellordered index set as domain. Then by (ii), the net A pre- (ω_r, s) - θ_t -adheres at a point $x \in X$. Now consider an $U \in (r, s)PO(X, x)$. Since X is pre- $(\omega_r, s)t$ regular, there exists $V \in (r, s)PO(X, x)$ such that $pcl_{\omega_t}(V) \subset cl_{\omega_t}(V) \subset U$. Now since net A pre- (ω_r, s) - θ_t -adheres at a point $x \in X$, so for any $\lambda \in A$, there exists $\mu(\succeq \lambda) \in A$ such that $x_{\mu} \in pcl_{\omega_t}(V) \cap A$ and hence card(A) = $card(A \cap pcl_{\omega_t}(V))$ and for similar cause $card(A \cap U) = card(A \cap pcl_{\omega_t}(V))$. Therefore $card(A \cap U) = card(A)$. Hence x is a pre- (ω_r, s) - θ_t -complete adherent point of A.

(iii) \Rightarrow (i). Let X be not $P_{(\omega_r,s)}^t$ -closed. Then Theorem 4.6 implies that X has a cover Σ by pre- (ω_r, s) - θ_t -open sets of X without any finite subcover. Let ρ be the minimum of the cardinal numbers of the subcover Σ_0 of Σ . Then clearly $\rho \geq \aleph_0$. Let Σ_0 be well-ordered by minimal well-ordering \prec . Then for each $U \in \Sigma_0$, card($\{W \in \Sigma : W \prec U\}$) $< \rho$ and so $\{W \in \Sigma : W \prec U\}$ can not be a cover of X. Then for each $U \in \Sigma_0$, there exists $x_U \in X - \cup \{W \in \Sigma : W \prec U\}$ can not be a cover of X. Then for each $U \in \Sigma_0$, there exists $x_U \in X - \cup \{W \in \Sigma : W \prec U\}$. Now consider $P = \{x_U : U \in \Sigma_0\}$. Since $U, V \in \Sigma_0, U \neq V$ implies $x_U \neq x_V$, card(P) = ρ . So P is an infinite set. Now consider any $x \in X$. Then $x \in U_0$ for some $U_0 \in \Sigma_0$. Since $x_U \in U_0$ implies $U \prec U_0$. Therefore $\{U \in \Sigma_0 : x_U \in U_0\} \subset \{U \in \Sigma_0 : U \prec U_0\}$ and so by the minimality of \prec , we get card($\{U \in \Sigma_0 : x_U \in U_0\}$) $< \rho$. Thus card($A \cap U_0$) $< \rho =$ card(A). So xcan not be pre- (ω_r, s) - θ_t -complete adherent point of A.

5. Pre- $(\omega_r, s)t$ - θ_f -cluster sets

Definition 5.1. Let $\varphi: (X, \tau_1, \tau_2) \to (Y, \varrho_1, \varrho_2)$ be a function. Then the pre-

 $(\omega_r, s)t-\theta_f$ -cluster set (resp. $(r, s)t-\theta_f$ -precluster set) of φ at the point $x \in X$ is the set $P_{(\omega_r,s)t}^{\theta_f}(\varphi,x) = \cap \{ cl_{\theta_f}(\varphi(pcl_{\omega_t}(U))) : U \in (r,s)PO(X,x) \}$ (resp. $P_{(r,s)t}^{\theta_f}(\varphi,x) = \cap \{ cl_{\theta_f}(\varphi(pcl_t(U))) : U \in (r,s)PO(X,x) \}).$

It is clear that $P_{(\omega_r,s)t}^{\theta_f}(\varphi,x) \subset P_{(r,s)t}^{\theta_f}(\varphi,x)$. The following example establishes that $P_{(\omega_r,s)t}^{\theta_f}(\varphi,x) \neq P_{(r,s)t}^{\theta_f}(\varphi,x)$.

Example 5.2. Consider the same bitopological space X as in Example 3.7 and the identity function $\varphi: X \to X$. Then $P_{(\omega_2,1)2}^{\theta_1}(\varphi, \sqrt{2}) = \cap \{ cl_{\theta_1}(\varphi(pcl_{\omega_2}(U))) :$ $U \in (2,1)PO(X,\sqrt{2})\} = \cap \{cl_{\theta_1}(pcl_{\omega_2}(U)) : U \in \tau_2\} = \cap \{cl_{\theta_1}(U) : U \in \tau_2\} = \cap \{U : U \in \tau_2\} = \{\sqrt{2}\} \text{ and } P^{\theta_1}_{(2,1)2}(\varphi,\sqrt{2}) = X.$

Theorem 5.3. For any function $\varphi : (X, \tau_1, \tau_2) \to (Y, \varrho_1, \varrho_2)$, following statements are equivalents

(i) $y \in P_{(\omega_r,s)t}^{\hat{\theta}_f}(\varphi, x)$, (ii) The filter base $\mathcal{F} = \{\varphi^{-1}(cl_f(U)) : U \in \varrho_f(y)\}$ pre- (ω_r, s) - θ_t -adheres at x,

(iii) There exists a grill \mathcal{G} on X pre- (ω_r, s) - θ_t -converging to x and $y \in$ $\cap \{ cl_{\theta_f}(\varphi(K)) : K \in \mathcal{G} \}.$

Proof. (i) \Rightarrow (ii). Let $y \in P_{(\omega_r,s)t}^{\theta_f}(\varphi, x)$. It is obvious to note that \mathcal{F} is a filter base on X. If possible, let the filter base \mathcal{F} does not pre- (ω_r, s) - θ_t -adhere at x. Then there exist a $V \in (r, s)PO(X, x)$ and an $U \in \rho_f(y)$ such that $pcl_{\omega_t}(V) \cap$ $\varphi^{-1}(cl_f(U)) = \emptyset$. So $\varphi(pcl_{\omega_t}(V)) \cap cl_f(U) = \emptyset$. Hence $y \notin cl_{\theta_f}(\varphi(pcl_{\omega_t}(U)))$, which is a contradiction.

(ii) \Rightarrow (iii). Consider the family $\mathcal{G} = \{G \subset X : G \cap F \neq \emptyset \text{ for all } F \in \mathcal{F}\}.$ We claim that \mathcal{G} is a grill on X. It is clear that \mathcal{G} is nonempty and does not contained empty set. Let $G \notin \mathcal{G}$ and $H \notin \mathcal{G}$. Then there exist $E, F \in \mathcal{F}$ such that $E \cap G = \emptyset$ and $F \cap H = \emptyset$. But since \mathcal{F} is a filter base on X, there exists $K \in \mathcal{F}$ such that $K \subset E \cap F$ and hence $K \cap (G \cup H) = \emptyset$. So $G \cup H \notin \mathcal{G}$. Again $G \in \mathcal{G}$ and $H \supset G$ imply $H \in \mathcal{G}$ obviously. Hence \mathcal{G} is a grill on X. Let now $V \in (r,s)PO(X,x)$. Then by (ii), $pcl_{\omega_t}(V) \cap F \neq \emptyset$ for all $F \in \mathcal{F}$. So $pcl_{\omega_t}(V) \in \mathcal{G}$. Hence the grill \mathcal{G} pre- (ω_r, s) - θ_t -converges to x. Let $K \in \mathcal{G}$. The definition of \mathcal{G} implies that $\varphi^{-1}(cl_f(U)) \cap K \neq \emptyset$ for all $U \in \varrho_f(y)$. Therefore $cl_f(U) \cap \varphi(K) \neq \emptyset$ for all $U \in \varrho_f(y)$. So $y \in cl_{\theta_f}(\varphi(K))$ for all $K \in \mathcal{G}$.

(iii) \Rightarrow (i). Let $U \in (r, s)PO(X, x)$. Then (iii) ensures the existence of a $K \in$ \mathcal{G} such that $K \subset pcl_{\omega_t}(U)$ and $y \in cl_{\theta_f}(\varphi(K))$. Therefore $y \in cl_{\theta_f}(\varphi(pcl_{\omega_t}(U)))$.

Theorem 5.4. Let (Y, ρ_1, ρ_2) be a pairwise (r, f)-Urysohn space. Then for some bitopological space (X, τ_1, τ_2) , and for some function $\varphi : (X, \tau_1, \tau_2) \rightarrow$ $(Y, \varrho_1, \varrho_2), P^{\theta_f}_{(\omega_r, s)r}(\varphi, x)$ at every point $x \in X$ is degenerate.

Proof. Let $(Y, \varrho_1, \varrho_2)$ be a pairwise (r, f)-Urysohn space. If the theorem does not hold, the identity function $I: Y \to Y$, there exists $y \in Y$ such that $P_{(\omega_r,s)r}^{\theta_f}(\varphi, y) \text{ is not degenerate. So there exists } y_0(\neq y) \in Y \text{ such that } y_0 \in P_{(\omega_r,s)r}^{\theta_f}(\varphi, y).$ Then for each $U_y \in (r,s)PO(Y,y)$ and $U_{y_0} \in \varrho_f(y_0)$ such that $pcl_{\omega_r}(U_y) \cap (cl_f(U_{y_0})) \neq \emptyset$. Since $\varrho_r \subset P(\omega_r,s)O(X), cl_r(U_y) \cap (cl_f(U_{y_0})) \neq \emptyset$ for each $U_y \in \varrho_r(y)$ and for each $U_{y_0} \in \varrho_f(y_0)$, which is a contradiction. \Box

Definition 5.5. A function $\varphi : (X, \tau_1, \tau_2) \to (Y, \varrho_1, \varrho_2)$ is called pre- $(\omega_r, s)t$ - θ_f -irresolute if $cl_f(\varphi(V)) \subset \varphi(pcl_{\omega_t}(V))$ for every $V \subset X$.

Definition 5.6. A function $\varphi : (X, \tau_1, \tau_2) \to (Y, \varrho_1, \varrho_2)$ is called (r, s)f-preopen if the image of every (r, s)-preopen set of X is f-open in Y.

Theorem 5.7. Let $\varphi : (X, \tau_1, \tau_2) \to (Y, \varrho_1, \varrho_2)$ be any pre- $(\omega_r, s)t$ - θ_f -irresolute, (r, s)f-preopen surjection whose pre- $(\omega_r, s)t$ - θ_f -cluster set at every point $x \in X$ is degenerate. Then Y is f-Urysohn space.

Proof. Let $y_1, y_2 \in Y$ and $y_1 \neq y_2$. Since φ is surjective, there exists $x_1, x_2 \in X$ such that $\varphi(x_1) = y_1$ and $\varphi(x_2) = y_2$. The degeneracy of $P_{(\omega_r,s)t}^{\theta_f}(\varphi, x_1)$ implies that $\varphi(x_2) \notin P_{(\omega_r,s)t}^{\theta_f}(\varphi, x_1)$. So by Theorem 5.3(ii), there exist $V_{x_2} \in (r,s)PO(X, x_2)$ and $U_{y_1} \in \varrho_f(y_1)$ such that $pcl_{\omega_t}(V_{x_2}) \cap \varphi^{-1}(cl_f(U_{y_1})) = \emptyset$ i.e., $\varphi(pcl_{\omega_t}(V_{x_2})) \cap cl_f(U_{y_1}) = \emptyset$. Thus $cl_f(\varphi(V_{x_2})) \cap cl_f(U_{y_1}) = \emptyset$. So the space Y is f-Urysohn.

Definition 5.8. A function $\varphi : (X, \tau_1, \tau_2) \to (Y, \varrho_1, \varrho_2)$ is called strongly pre- $(\omega_r, s)t$ - θ_f -continuous if for each $x \in X$ and for each $U \in \varrho_f(\varphi(x))$, there exists $V \in (r, s)PO(X, x)$ such that $\varphi(pcl_{\omega_t}(V)) \subset U$.

Theorem 5.9. A space $(Y, \varrho_1, \varrho_2)$ is f-Hausdorff if and only if for each space (X, τ_1, τ_2) and for any $pre(\omega_r, s)t-\theta_f$ -continuous surjection $\varphi : (X, \tau_1, \tau_2) \rightarrow (Y, \varrho_1, \varrho_2)$ pre $(\omega_r, s)t-\theta_f$ -cluster set at every point $x \in X$ is degenerate.

Proof. Let Y be f-Hausdorff and for any X, $\varphi : (X, \tau_1, \tau_2) \to (Y, \varrho_1, \varrho_2)$ be a strongly pre- $(\omega_r, s)t$ - θ_f -continuous surjection. Let $x \in X$ and $y \in Y$ with $y \neq \varphi(x)$. Since φ is a strongly pre- $(\omega_r, s)t$ - θ_f -continuous surjection, for each $U \in \varrho_f(\varphi(x))$, there exists $V \in (r, s)PO(X, x)$ such that $\varphi(pcl_{\omega_t}(V)) \subset U$. Now $P_{(\omega_r,s)t}^{\theta_f}(\varphi, x) = \cap \{cl_{\theta_f}(\varphi(pcl_{\omega_t}(V))) : V \in (r, s)PO(X, x)\} \subset \cap \{cl_{\theta_f}(U) : U \in \varrho_f(\varphi(x))\} = \cap \{cl_f(U) : U \in \varrho_f(\varphi(x))\}$. Again since Y is f-Hausdorff, there exist disjoint sets $Q_1 \in \varrho_f(\varphi(x))$ and $Q_2 \in \varrho_f(y)$ and so $cl_f(Q_1) \cap Q_2 = \emptyset$. Hence $y \notin cl_f(Q_1)$ and so $y \notin P_{(\omega_r,s)t}^{\theta_f}(\varphi, x)$.

Conversely, let for each space (X, τ_1, τ_2) and for any strongly pre- $(\omega_r, s)t$ - θ_f continuous surjection $\varphi : (X, \tau_1, \tau_2) \to (Y, \varrho_1, \varrho_2), P^{\theta_f}_{(\omega_r, s)t}(\varphi, x)$ is degenerate for each $x \in X$. Let y_1, y_2 be any two distinct points of Y. Then there exist two points $x_1, x_2 \in X$ such that $y_1 = \varphi(x_1)$ and $y_2 = \varphi(x_2)$. The degeneracy of $P^{\theta_f}_{(\omega_r, s)t}(\varphi, x_1)$ implies that $y_2 \notin P^{\theta_f}_{(\omega_r, s)t}(\varphi, x_1)$. Hence there exist $V \in (r, s)PO(X, x_1)$ and $U \in \varrho_f(y_2)$ such that $\varphi(pcl_{\omega_t}(V)) \cap cl_f(U) = \emptyset$ and 146

so $\varphi(pcl_{\omega_t}(V)) \subset Y - cl_f(U)$. Therefore $Y - cl_f(U)$ and U are required disjoint f-open sets containing y_1 and y_2 respectively and making Y as a f-Hausdorff space.

Theorem 5.10. Let the bitopological space (X, τ_1, τ_2) be f-almost regular and for a space (X, τ_1, τ_2) , $\varphi : (X, \tau_f) \to (Y, \varrho_f)$ be a θ -closed map. If $\varphi^{-1}(y)$ is θ_f -closed in X for each $y \in Y$ and τ_r is finer than τ_f , then $P_{(\omega_r,s)f}^{\theta_f}(\varphi, x)$ is degenerate for each $x \in X$.

Proof. Since every f-open set is a pre- ω_f -open set of X, $P_{(\omega_r,s)f}^{\theta_f}(\varphi, x) = \cap \{cl_{\theta_f}(\varphi(pcl_{\omega_f}(V))) : V \in (r,s)PO(X,x)\} \subset \cap \{cl_{\theta_f}(\varphi(cl_f(V))) : V \in (r,s)PO(X,x)\} \subset \cap \{cl_{\theta_f}(\varphi(cl_{\theta_f}(V))) : V \in (r,s)PO(X,x)\}$. Since X is f-almost regular and $\varphi : (X, \tau_f) \to (Y, \varrho_f)$ is a θ -closed map, $cl_{\theta_f}(\varphi(cl_{\theta_f}(V)) = \varphi(cl_{\theta_f}(V))$ for each $V \in (r,s)PO(X,x)$. So $P_{(\omega_r,s)f}^{\theta_f}(\varphi, x) \subset \cap \{\varphi(cl_{\theta_f}(V)) : V \in (r,s)PO(X,x)\}$. Let $x \in X$ and $y \in Y$ with $y \neq \varphi(x)$. Then θ_f -closedness of $\varphi^{-1}(y)$ ensures the existence of a $G \in \tau_f(x)$ such that $cl_f(G) \cap \{\varphi^{-1}(y)\} = \emptyset$ and then the f-openness of G gives $\varphi(cl_f(G)) \cap \{y\} = \varphi(cl_{\theta_f}(G)) \cap \{y\} = \emptyset$. Since $\tau_f \subset \tau_r \subset (r,s)PO(X,x), y \notin P_{(\omega_r,s)f}^{\theta_f}(\varphi,x)$.

Theorem 5.11. Let space (X, τ_1, τ_2) be f-almost regular f-Hausdorff and for a space $(X, \tau_1, \tau_2), \varphi : (X, \tau_f) \to (Y, \varrho_f)$ be a θ -closed injection. If τ_r is finer than τ_f , then $P^{\theta_f}_{(\omega_r, s)f}(\varphi, x)$ is degenerate for each $x \in X$.

Proof. The f-almost regularity of X and θ -closedness of φ (as in Theorem 5.10) imply that $P_{(\omega_r,s)f}^{\theta_f}(\varphi, x) \subset \cap \{\varphi(cl_{\theta_f}(V)) : V \in (r,s)PO(X,x)\}$. Let any $x' \in X$ with $x \neq x'$. Since X is f-Hausdorff, there exist $H \in \tau_f(x) \subset \tau_r(x) \subset (r,s)PO(X,x)$ such that $x' \notin cl_{\theta_f}(H)$ and so $\varphi(x') \notin \varphi(cl_{\theta_f}(H))$. Hence $\varphi(x') \notin P_{(\omega_r,s)f}^{\theta_f}(\varphi, x)$.

Definition 5.12. Let $\Omega : (X, \tau_1, \tau_2) \to (Y, \varrho_1, \varrho_2)$ be a multifunction. Then the pre- $(\omega_r, s)t$ - θ_f -cluster set of Ω at the point $x \in X$ is the set $P_{(\omega_r, s)t}^{\theta_f}(\Omega, x) =$ $\cap \{ cl_{\theta_f}(\Omega(pcl_{\omega_t}(U))) : U \in (r, s)PO(X, x) \}$. For any $M \subset X$, the symbol $P_{(\omega_r, s)t}^{\theta_f}(\Omega, M)$ is the set $\cup \{ P_{(\omega_r, s)t}^{\theta_f}(\Omega, x) : x \in M \}$.

Definition 5.13. A multifunction $\Omega : (X, \tau_1, \tau_2) \to (Y, \varrho_1, \varrho_2)$ is said to have pre- $(\omega_r, s)t$ - θ_f -closed graph if for each $(x, y) \notin G(\Omega)$, there exist $U \in (r, s)PO(X, x)$ and $V \in \varrho_f(y)$ such that $(pcl_{\omega_t}(U) \times cl_f(V)) \cap G(\Omega) = \emptyset$.

Theorem 5.14. For any multifunction $\Omega : (X, \tau_1, \tau_2) \to (Y, \varrho_1, \varrho_2)$, following two conditions are equivalent:

- (a) $P_{(\omega_r,s)t}^{\theta_f}(\Omega, x) = \Omega(x)$ for each $x \in X$,
- (b) Ω has pre- $(\omega_r, s)t$ - θ_f -closed graph.

 $\begin{array}{l} Proof. (a) \Rightarrow (b). \text{ Let } (x,y) \notin G(\Omega). \text{ Then } y \notin \Omega(x). \text{ Hence } (a) \text{ ensures the} \\ \text{existence of } U \in (r,s) PO(X,x) \text{ and } V \in \varrho_f(y) \text{ such that } \Omega(pcl_{\omega_t}(U)) \cap cl_f(V) = \\ \emptyset. \text{ Thus } (pcl_{\omega_t}(U) \times cl_f(V)) \cap G(\Omega) = \emptyset. \text{ So } \Omega \text{ has } \text{pre-}(\omega_r,s)t - \theta_f \text{-closed graph.} \\ (b) \Rightarrow (a). \text{ Let } \Omega \text{ have } \text{pre-}(\omega_r,s)t - \theta_f \text{-closed graph.} \text{ Let } y \notin \Omega(x). \text{ Then} \\ (x,y) \notin G(\Omega). \text{ Since } \Omega \text{ has } \text{pre-}(\omega_r,s)t - \theta_f \text{-closed graph, there exist } U \in \\ (r,s)PO(X,x) \text{ and } V \in \varrho_f(y) \text{ such that } (pcl_{\omega_t}(U) \times cl_f(V)) \cap G(\Omega) = \emptyset \text{ and} \\ \text{hence } \Omega(pcl_{\omega_t}(U)) \cap cl_f(V) = \emptyset. \text{ Thus } y \notin P_{(\omega_r,s)t}^{\theta_f}(\Omega,x) \text{ and so } P_{(\omega_r,s)t}^{\theta_f}(\Omega,x) = \\ \Omega(x). \end{array}$

Theorem 5.15. If a multifunction $\Omega : (X, \tau_1, \tau_2) \to (Y, \varrho_1, \varrho_2)$ has θ -closed graph in the product space $(X, \tau_f) \times (Y, \varrho_f)$, then $P^{\theta_f}_{(\omega_r, s)f}(\Omega, x) = \Omega(x)$ for each $x \in X$.

Proof. Let $x \in X$ and $y \in P_{(\omega_r,s)f}^{\theta_f}(\Omega, x)$. Then for each $U \in (r,s)PO(X,x)$ and for each $V \in \varrho_f(y)$, $\Omega(pcl_{\omega_f}(U)) \cap cl_f(V) \neq \emptyset$ and so $cl_f(U) \cap \Omega^-(cl_f(V)) \supset pcl_{\omega_f}(U) \cap \Omega^-(cl_f(V)) \neq \emptyset$. Hence in particular there exist open sets $M \in \tau_f(x)$ and $N \in \varrho_f(y)$ such that $cl_f(M) \cap \Omega^-(cl_f(N)) \neq \emptyset$ and so $cl_f(M \times N) \cap G(\Omega) = (cl_f(M) \times cl_f(N)) \cap G(\Omega) \neq \emptyset$. So $(x, y) \in cl_\theta(G(\Omega)) = G(\Omega)$. Hence $y \in \Omega(x)$. Hence $P_{(\omega_r,s)f}^{\theta_f}(\Omega, x) = \Omega(x)$.

Theorem 5.16. If a bitopological space X satisfies any one of the following two conditions:

(a) For any bitopological space $(Y, \varrho_1, \varrho_2)$ and any multifunction $\Omega: (X, \tau_1, \tau_2) \to (Y, \varrho_1, \varrho_2), \ \cap \{r \cdot cl_{\theta_t}(\Omega(U)) : U \in (r, s)PO(X, Q)\} \subset P^{\theta_t}_{(\omega_r, s)t}(\Omega, Q) \text{ for each pre-}(\omega_r, s) \cdot \theta_t \text{-}closed subset Q of X,$

(b) for any any bitopological space $(Y, \varrho_1, \varrho_2)$ and any multifunction Ω : $(X, \tau_1, \tau_2) \rightarrow (Y, \varrho_1, \varrho_2), \cap \{p_{(\omega_r, s)} cl_{\theta_t}(\Omega(U)) : U \in (r, s) PO(X, Q)\} \subset P_{(\omega_r, s)t}^{\theta_t}(\Omega, Q)$ for each pre- (ω_r, s) - θ_t -closed subset Q of X, then X is $P_{(\omega_r, s)}^t$ -closed.

Proof. Since for any subset $A \subset X$, $p_{(\omega_r,s)}cl_{\theta_t}(\Omega(A)) \subset r - cl_{\theta_t}(\Omega(A))$, (a) implies (b). Now let (b) satisfies and \mathcal{F} be a filter base. Consider a point $q \notin X$ and the set $Y = X \cup \{q\}$. Then the family $\varrho_1 = \varrho_2 = P(X) \cup \{U \subset Y : q \in U$ and $F \in U$ for some $F \in \mathcal{F}\}$ is a topology on Y [15]. Then for the identity function $\varphi : (X, \tau_1, \tau_2) \to (Y, \varrho_1, \varrho_1)$, we shall show that $P_{(\omega_r,s)t}^{\theta_t}(\varphi, X) = p_{(\omega_r,s)}cl_{\theta_t}(X)$. Here (b) implies that $P_{(\omega_r,s)t}^{\theta_t}(\varphi, X) \supset \cap\{p_{(\omega_r,s)}cl_{\theta_t}(\varphi(U)) : U \in (r,s)PO(Y,X)\} = \bigcap\{p_{(\omega_r,s)}cl_{\theta_t}(U) : U \in (r,s)PO(Y,X)\} = p_{(\omega_r,s)}cl_{\theta_t}(X)$ (in $(Y, \varrho_1, \varrho_1)$). To show $P_{(\omega_r,s)t}^{\theta_t}(\varphi, X) \subset p_{(\omega_r,s)}cl_{\theta_t}(X)$, it is sufficient to prove that $q \in p_{(\omega_r,s)}cl_{\theta_t}(X)$ (in $(Y, \varrho_1, \varrho_1)$). It is clear that $\{q\} \notin \delta_Y$. Again we note that $int_r(cl_s(\{q\})) = \emptyset$ and so $\{q\} \notin (r,s)PO(Y,p)$. Thus $pcl_{\omega_t}(G) \cap X \neq \emptyset$ for every $G \in (r,s)PO(Y,q)$ and hence $q \in p_{(\omega_r,s)}cl_{\theta_t}(X)$. Therefore $q \in P_{(\omega_r,s)t}^{\theta_t}(\varphi, x)$ for some $x \in X$. Now consider $F \in \mathcal{F}$ and $V \in (r,s)PO(X,x)$. Since $Y - (F \cup \{q\}), F \cup \{q\} \in \varrho_t, cl_t(F \cup \{q\}) = F \cup \{q\}$. Again since $q \in P_{(\omega_r,s)t}^{\theta_t}(\varphi, x)$, Theorem 5.3 ensures that $\varphi^{-1}(cl_t(F \cup \{q\})) \cap pcl_{\omega_t}(V) \neq \emptyset$

148

i.e., $cl_t(F \cup \{q\}) \cap \varphi(pcl_{\omega_t}(V)) \neq \emptyset$. Therefore $pcl_{\omega_t}(V) \cap F = \varphi(pcl_{\omega_t}(V)) \cap (F \cup \{q\}) = \varphi(pcl_{\omega_t}(V)) \cap cl_t(F \cup \{q\}) \neq \emptyset$. Hence by the Theorem 4.4, X is $P^t_{(\omega_r,s)}$ -closed.

References

- A. A. K. Abd El-Aziz, On generalized forms of compactness, Master's thesis, Faculty of Science, Taunta University, Egypt, 1989.
- [2] M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud, β-open sets and β-continuous mapping, Bull. Fac. Sci. Assiut Univ. A 12 (1983), no. 1, 77–90.
- [3] K. Al-Zoubi and B. Al-Nashef, The topology of ω-open subsets, Al-Manarah Journal 9 (2003), no. 2, 169–179.
- [4] C. K. Basu and M. K. Cohosh, β-closed spaces and β-θ-subclosed graphs, Eur. J. Pure Appl. Math. 1 (2008), no. 3, 40–50.
- [5] _____, Locally β-closed spaces, Eur. J. Pure Appl. Math. 2 (2009), no. 1, 85–96.
- [6] C. K. Basu and B. M. Uzzal Afsan, P_ω-Closedness and Its generalization with respect to a grill, communicated.
- [7] C. K. Basu, B. M. Uzzal Afsan, and S. S. Mandal, Degeneracy of some cluster sets, Italian J. of Pure and Appl. Math. (accepted and to appear).
- [8] _____, Functions with strongly β-θ-closed graphs, Mathematica (Cluj), Tome 51(74), No. 2 (Dec 2009), 119-128.
- [9] S. Bose and D. Sinha, Almost open, almost closed, θ-continuous and almost quasicompact mappings in bitopological spaces, Bull. Calcutta Math. Soc. 73 (1981), no. 6, 345–354.
- [10] J. Dontchev, M. Ganster, and T. Noiri, On p-closed spaces, Int. J. Math. Math. Sci. 24 (2000), no. 3, 203–212.
- [11] H. Z. Hdeib, ω-closed mappings, Rev. Colombiana Mat. 16 (1982), no. 1-2, 65-78.
- [12] _____, ω-continuous functions, Dirasat Journal **16** (1989), no. 2, 136–153.
- [13] D. Jankovic, I. Reilly, and M. Vamanamurthy, On strongly compact topological spaces, Questions Answers Gen. Topology 6 (1988), no. 1, 29–40.
- [14] M. Jelić, A decomposition of pairwise continuity, J. Inst. Math. Comput. Sci. Math. Ser. 3 (1990), no. 1, 25–29.
- [15] J. E. Joseph, Multifunctions and cluster sets, Proc. Amer. Math. Soc. 74 (1979), no. 2, 329–337.
- [16] C. G. Kariofillis, On minimal pairwise Hausdorff bitopological spaces, Indian J. Pure Appl. Math. 19 (1988), no. 8, 751–760.
- [17] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. (3) 13 (1963), 71-89.
- [18] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [19] S. N. Maheshwari and R. Prasad, Some new separation axioms in bitopological spaces, Mat. Vesnik 12(27) (1975), no. 2, 159–162.
- [20] _____, Semi-open sets and semicontinuous functions in bitopological spaces, Math. Notae 26 (1977/78), 29–37.
- [21] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt No. 53 (1982), 47–53.
- [22] M. N. Mukherjee and A. Debray, On S-cluster sets and S-closed spaces, Int. J. Math. Math. Sci. 23 (2000), no. 9, 597–603.
- [23] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [24] T. Noiri, A. Al-Omari, and M. S. M. Noorani, Weak forms of ω-open sets and decompositions of continuity, Eur. J. Pure Appl. Math. 2 (2009), no. 1, 73–84.
- [25] _____, Slightly ω -continuous functions, Fasc. Math. No. 41 (2009), 97–106.

- [26] A. Al-Omari and M. S. M. Noorani, Contra-ω-continuous and almost contra-ωcontinuous, Int. J. Math. Math. Sci. 2007 (2007), Art. ID 40469, 13 pp.
- [27] _____, Regular generalized ω -closed sets, Int. J. Math. Math. Sci. 2007 (2007), Art. ID 16292, 11 pp.
- [28] M. K. Singal and S. Prabha Arya, On almost-regular spaces, Glasnik Mat. Ser. III 4 (24) (1969), 89–99.
- [29] T. Soundararajan, Weakly Hausdorff spaces and the cardinality of topological spaces, General Topology and its Relations to Modern Analysis and Algebra, III (Proc. Conf., Kanpur, 1968) pp. 301–306 Academia, Prague, 1971.
- [30] W. J. Thron, Proximity structures and grills, Math. Ann. 206 (1973), 35–62.
- [31] N. Veličko, *H-closed toplogical spaces*, Mat. Sb. **70** (1966), 98–112; Amer. Math. Soc. Transl. **78** (1968), no. 2, 103–118.

BIN MOSTAKIM UZZAL AFSAN DEPARTMENT OF MATHEMATICS SRIPAT SINGH COLLEGE JIAGANJ-742123, MURSHIDABAD WEST BENGAL, INDIA *E-mail address*: uzlafsan@gmail.com

CHANCHAL KUMAR BASU DEPARTMENT OF MATHEMATICS WEST BENGAL STATE UNIVERSITY BERUNANPUKURIA, P.O. MALIKAPUR BARASAT, NORTH 24 PARGANAS PIN-700126, WEST BENGAL, INDIA *E-mail address*: ckbasu1962@yahoo.com