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ASYMPTOTIC EQUIVALENCE FOR LINEAR

DIFFERENTIAL SYSTEMS

Sung Kyu Choi, Namjip Koo, and Keonhee Lee

Abstract. We investigate the asymptotic equivalence for linear differen-
tial systems by means of the notions of t∞-similarity and strong stability.

1. Introduction and preliminaries

Let M be the set of all n × n real matrix functions defined and continuous
on R+ = [0,∞) and S be the subset of M consisting of invertible matrices S(t)
that are of class C1 with the property that S(t) and S−1(t) are bounded. A
matrix function A ∈ M is said to be t∞-similar to a matrix function B ∈ M if
there exists an n× n matrix F (t) absolutely integrable over R+, i.e.,∫ ∞

0

|F (s)|ds < ∞,

such that

(1.1) S′(t) + S(t)B(t)−A(t)S(t) = F (t), ′ =
d

dt

for some matrix function S ∈ S.
The notion of t∞-similarity in the set of n× n continuous matrix functions

defined on R+ was introduced by Conti [9]. It is deeply related to stability prob-
lems and is an equivalence relation. Also, it preserves strict, uniform and expo-
nential stability of linear homogeneous differential systems. Hewer [12] studied
the stability properties of the variational equation. Trench [15] weakened the
condition of t∞-similarity and introduced the notion of t∞-quasisimilarity that
is not symmetric or transitive, but still preserves stability properties. Also, in
[16] he gave analogs of some of the results in [9, 15] for systems of difference
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equations. Choi et al. investigated h-stability of the differential systems via
t∞-similarity in [8].

Trench [16] introduced the notion of summable similarity which is a discrete
analog of t∞-similarity of matrix functions. Also, Choi and Koo [3] studied the
stability properties for variational difference systems by means of the notion of
n∞-similarity which is quite different from Trench’s definition in [16].

Let x(t) be a solution of the differential system

x′(t) = h(t, x(t)), x(t0) = x0,(1.2)

where h : R+×Rn → Rn is continuous. The solution x(t) is said to be strongly
stable [11] if for each ε > 0 there is a corresponding δ = δ(ε) > 0 such that any
solution x̄(t) of (1.2) which satisfies the inequality |x̄(t1)− x(t1)| < δ for some
t1 ≥ t0 satisfies the inequality |x̄(t)− x(t)| < ε for all t ≥ t0.

This notion of strong stability was introduced by Ascoli [1]. Obviously,
strong stability implies uniform stability, which in turn implies ordinary sta-
bility. For the linear system

(1.3) x′(t) = C(t)x(t),

where C ∈ M, the system (1.3) is strongly stable if and only if there exists a
positive constant M such that

|X(t)| ≤ M, |X−1(t)| ≤ M for all t ≥ t0,(1.4)

where X(t) is a fundamental matrix of (1.3) [11, Theorem 1, p. 54].
Two systems

x′(t) = f(t, x(t)), x(t0) = x0(1.5)

and

y′(t) = g(t, y(t)), y(t0) = y0(1.6)

are said to be asymptotically equivalent if, for every solution x(t) of (1.5), there
exists a solution y(t) of (1.6) such that

(1.7) x(t) = y(t) + o(1) as t → ∞

and conversely, for every solution y(t) of (1.6), there exists a solution x(t) of
(1.5) satisfying (1.7).

If we know that two systems are asymptotically equivalent, and if we also
know the asymptotic behavior of the solutions of one of the systems, then it is
clear that we can obtain information about the asymptotic behavior of the so-
lutions of the other systems. Choi et al. [5] studied the asymptotic equivalence
for the nonlinear differential systems through their variational systems. Also,
for the asymptotic equivalence between Volterra difference systems, see [4, 6].

In this paper we investigate the asymptotic equivalence between linear dif-
ferential systems by means of t∞-similarity and strong stability, and give the
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several illustrative examples. Throughout this paper Rn is the n-dimensional
real Euclidean space with norm

|x| =
n∑

i=1

|xi|, x = (x1, . . . , xn) ∈ Rn

and for an n× n matrix A = (aij), we define its norm |A| by

|A| = max
j=1,...,n

n∑
i=1

|aij |.

2. Main results

We consider two linear differential systems

x′(t) = A(t)x(t)(2.1)

and

y′(t) = B(t)y(t),(2.2)

where A,B ∈ M. Firstly, we investigate stability properties between (2.1) and
its adjoint system

(2.3) w′(t) = −AT (t)w(t),

where AT is the transpose of A.
System (2.1) is said to be restrictively stable [2] if (2.1) is stable and its

adjoint system (2.3) is stable. Restrictive stability implies uniform stability,
and this, in turn, implies ordinary stability. The converses are not true [2]. We
note that for linear system (2.1), restrictive stability and strong stability are
equivalent.

Also, (2.1) is said to be reducible (reducible to zero, respectively) [2] if there
exists an n×n absolutely continuous matrix function L(t) which, together with
its inverse L−1(t), is defined and bounded such that

L−1(t)A(t)L(t)− L−1(t)L′(t)

is a constant matrix (the zero matrix, respectively) on R+.

Theorem 2.1. The following statements are equivalent:
(i) System (2.1) is strongly stable.
(ii) Adjoint system (2.3) is strongly stable.

(iii) System (2.1) is stable and
∫ t

t0
trA(s)ds is bounded from below, where

trA(t) is the trace of A(t).
(iv) System (2.1) is reducible to zero.

Proof. Let X(t) be a fundamental matrix of (2.1). Then a fundamental matrix
W (t) of (2.3) is given by W (t) = (X−1(t))T . Thus (2.1) is strongly stable if
and only if there exists a positive constant M such that

|X(t)| ≤ M, |X−1(t)| ≤ M for all t ∈ R+,
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by (1.4), if and only if there exists a positive constant M such that

|W (t)| = |(X−1(t))T | = |X−1(t)| ≤ M

and

|W−1(t)| = |XT (t)| = |X(t)| ≤ M,

by the property of |X−1(t)| = |(X−1(t))T | for each t ∈ R+, if and only if the
adjoint system (2.3) is strongly stable. The remaining part of proof follows
from [2, (3.9.iii), p. 45], [2, (3.9.v), p. 46] and [11, p. 57]. □

We say that linear system (2.1) has linear asymptotic equilibrium if for every
vector ξ ∈ Rn there exists a solution x(t) = x(t, t0, x0) of (2.1) such that

(2.4) lim
t→∞

x(t) = ξ.

Lemma 2.2 ([7, Theorem 3.2]). (2.1) has linear asymptotic equilibrium if and
only if (2.1) has a fundamental matrix X(t) such that limt→∞ X(t) exists and
is invertible.

Corollary 2.3. System (2.1) has linear asymptotic equilibrium if and only if
its adjoint system (2.3) has linear asymptotic equilibrium.

Proof. We easily see that

lim
t→∞

W (t) = [( lim
t→∞

X−1(t))]T

= [X−1
∞ ]T ≡ W∞,

where limt→∞ X(t) = X∞ exists and it is invertible. Thus limt→∞ X(t) = X∞
exists, and X∞ is invertible if and only if limt→∞ W (t) = W∞ exists and W∞
is invertible. The result follows from Lemma 2.2. □

We can easily obtain the following asymptotic relation between solutions of
(2.1) and (2.3).

Theorem 2.4. Assume that (2.1) is strongly stable. Then for any solution
x(t, t0, x0) of (2.1) there exists a solution w(t, t0, w0) of the adjoint system
(2.3) such that the following asymptotic relationship holds:

x(t) = w(t) +O(M) as t → ∞

for some positive constant M , where O is the “ big oh”.

In view of Corollary 2.3, we obtain the following:

Corollary 2.5. Assume that (2.1) has linear asymptotic equilibrium. Then
(2.1) and (2.3) are asymptotically equivalent.

Lemma 2.6 ([14, Theorem 21, p. 497]). For systems (2.1) and (2.2) assume
that a matrix function A ∈ M is t∞-similar to a matrix function B ∈ M. Then
(2.1) is strongly stable if and only if (2.2) is also strongly stable.
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Note that Lemma 2.6 can be easily proved by using the notion of reducibility.
The following theorem shows that the asymptotic property between two

linear systems is preserved under strong stability and t∞-similarity.

Theorem 2.7. Suppose that a matrix function A ∈ M is t∞-similar to a
matrix function B ∈ M and (2.1) is strongly stable. Let X(t) and Y (t) be
fundamental matrices of (2.1) and (2.2), and choose S ∈ S so that (1.1) holds
with

∫∞
0

|F (s)|ds < ∞. Then we have

Y (t) = S−1(t)X(t)[D(t0) + o(1)] as t → ∞,

where D(t0) = X−1(t0)S(t0)Y (t0)+
∫∞
t0

X−1(s)F (s)Y (s)ds for each t ≥ t0 ≥ 0,
and o is the “little oh”.

Proof. From [14, pp. 492–493], we have

(2.5)
S(t) = X(t)[X−1(t0)S(t0)Y (t0) +

∫ t

t0

X−1(s)F (s)Y (s)ds]Y −1(t),

t ≥ t0 ≥ 0.

Thus we have

Y (t) = S−1(t)X(t)[X−1(t0)S(t0)Y (t0) +

∫ t

t0

X−1(s)F (s)Y (s)ds].

It follows from Lemma 2.6 that (2.2) is also strongly stable. Thus there exists
a positive constant M such that

|X(t)| ≤ M, |X−1(t)| ≤ M,

|Y (t)| ≤ M, |Y −1(t)| ≤ M for all t ≥ t0.

Putting Q(t) =
∫ t

t0
X−1(s)F (s)Y (s)ds for any t ̸= s (t > s), we have

|Q(t)−Q(s)| ≤ |
∫ t

s

X−1(τ)F (τ)Y (τ)dτ |

≤ M2

∫ t

s

|F (τ)|dτ.

Hence Q(t) is convergent from the absolute integral of
∫∞
0

F (τ)dτ , i.e., limt→∞
Q(t) = Q∞(t0) exists. Therefore

Y (t) = S−1(t)X(t)[X−1(t0)S(t0)Y (t0) +

∫ t

t0

X−1(s)F (s)Y (s)ds]

= S−1(t)X(t)[X−1(t0)S(t0)Y (t0) +

∫ ∞

t0

X−1(s)F (s)Y (s)ds

−
∫ ∞

t

X−1(s)F (s)Y (s)ds]

= S−1(t)X(t)[D(t0) + o(1)] as t → ∞,
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where D(t0) = X−1(t0)S(t0)Y (t0) +
∫∞
t0

X−1(s)F (s)Y (s)ds. This completes
the proof. □

Corollary 2.8. Assume that
∫∞
0

|A(t) − B(t)|dt < ∞ and (2.1) is strongly
stable. Then we have the following asymptotic formula:

Y (t) = X(t)[D(t0) + o(1)] as t → ∞,

where X(t) and Y (t) are fundamental matrices of (2.1) and (2.2), respectively.
Moreover, (2.1) and (2.2) are asymptotically equivalent.

Proof. Let y(t) = y(t, t0, y0) be any solution of (2.2). Since strong stability
implies boundedness, the solution y(t) given by y(t) = Y (t)Y −1(t0)y(t0) is
bounded. Putting F (t) = B(t)− A(t) and S(t) = I, it follows from (2.5) that
there exists a solution x(t) = x(t, t0, x0) of (2.1) such that

y(t) = Y (t)Y −1(t0)y0

= X(t)X−1(t0)[y0 +

∫ t

t0

X(t0)X
−1(s)F (s)Y (s)Y −1(t0)y0ds]

= X(t)X−1(t0)[y0 +

∫ ∞

t0

X(t0)X
−1(s)F (s)y(s)ds]

−X(t)

∫ ∞

t

X−1(s)F (s)Y (s)Y −1(t0)y0ds

= x(t) + o(1) as t → ∞,

where x0 = y0 +
∫∞
t0

X(t0)X
−1(s)F (s)y(s)ds. Note that

∫∞
t0
X(t0)X

−1(s)F (s)y(s)ds

exists by means of
∫∞
0

|F (s)|ds < ∞ and boundedness of the solution y(t) of
(2.2).

Also, the converse holds. This completes the proof. □

Remark 2.9. In addition to the assumptions of Corollary 2.8, we assume that
|I − D(t0)| < 1 with X(t0) = I = Y (t0). Then for any solution x(t) of (2.1)
there exists the unique solution y(t) of (2.2) such that

x(t) = y(t) + o(1) as t → ∞,

and the converse similarly holds. Because we can choose a number t0 so suffi-
ciently large that

|I −D(t0)| = |
∫ ∞

t0

X−1(s)F (s)Y (s)ds| < 1.

We easily see that D(t0) is invertible for sufficiently large number t ≥ t0. Hence
we have the following asymptotic formula

Y (t) = X(t)[D(t0) + o(1)] as t → ∞.

Theorem 2.10. Assume that
∫∞
0

|A(t) − B(t)|dt < ∞ and (2.1) has linear
asymptotic equilibrium. Then (2.2) has linear asymptotic equilibrium.
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Proof. For any t ̸= s (t > s), it follows from [14, pp. 492–493] that we have

|Y (t)− Y (s)| ≤ |X(t)−X(s)||X−1(t0)Y (t0)|

+ |X(t)−X(s)||
∫ s

t0

X−1(τ)F (τ)Y (τ)dτ |

+ |X(t)||
∫ t

s

X−1(τ)F (τ)Y (τ)dτ |,

where F (t) = B(t)−A(t). Since limt→∞ X(t) = X∞ exists and
∫∞
0

|F (τ)|dτ <
∞, Y (t) has a Cauchy property, so limt→∞ Y (t) = Y∞ exists. Put

P (t) =

∫ ∞

t

X(t0)X
−1(τ)F (τ)Y (τ)Y −1(t0)dτ.

Since P (t0) exists for each t0, we can choose a number t0 so sufficiently large
that

|P (t0)| < 1.

It follows that I + P (t0) has an invertible matrix [13].
Thus we obtain

lim
t→∞

Y (t)Y −1(t0)

= lim
t→∞

(
X(t)X−1(t0)

[
I +

∫ t

t0

X(t0)X
−1(τ)F (τ)Y (τ)Y −1(t0)dτ

])
= X∞X−1(t0)[I + P (t0)].

Since I +P (t0) and X∞ are invertible, Y∞ is invertible. Hence (2.2) has linear
asymptotic equilibrium by Lemma 2.2. □

We can obtain the following theorem by using the well-known variation of
constants formula.

Theorem 2.11. Assume that
∫∞
0

|A(t) − B(t)|dt < ∞ and (2.1) is strongly
stable. Then (2.1) and (2.2) are asymptotically equivalent.

Proof. Let x(t) = x(t, t0, x0) be any solution of (2.1). Since (2.2) can be written
as

y′(t) = B(t)y(t) = A(t)y(t) + (B(t)−A(t))y(t),

the solution y(t, t0, y0) of (2.2) is given by

y(t) = X(t)X−1(t0)[I +

∫ t

t0

X(t0)X
−1(τ)F (τ)Y (τ)Y −1(t0)dτ ]y0,

where F (t) = B(t)−A(t). Thus we can find the unique solution y0 of the linear
system (I + P (t0))y0 = x0 such that the solution of the linear system is given
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by y0 = (I +P (t0))
−1x0. Hence there exists a solution y(t, t0, y0) of (2.2) with

y0 = (I + P (t0))
−1x0 such that the following asymptotic formula holds:

y(t) = X(t)X−1(t0) (I + P (t0)− P (t)) y0

= x(t, t0, x0)−X(t)X−1(t0)P (t)(I + P (t0))
−1x0

= x(t) + o(1) as t → ∞,

since |P (t)| → 0 as t → ∞. Also, the converse similarly holds. □
Corollary 2.12. Assume that

∫∞
0

|A(t) − B(t)|dt < ∞ and (2.1) has linear
asymptotic equilibrium. Then (2.1) and (2.2) are asymptotically equivalent.

Conti [10] showed that linear asymptotic equilibrium for linear differen-
tial systems is preserved by the notion of t∞-similarity under condition that
limt→∞ S(t) and limt→∞ S−1(t) both exist. Also, we can prove that (2.1) and
(2.2) are asymptotically equivalent under the some conditions.

Lemma 2.13 ([7, Theorem 2.3]). Suppose that a fundamental matrix X(t) of
(2.1) is bounded for each t ≥ t0 and | det(X(t))| > α > 0 for each t ≥ t0 and
some positive constant α. Then (2.1) is strongly stable.

Corollary 2.14. Assume that a matrix function A ∈ M is t∞-similar to a
matrix function B ∈ M with S(t) = I. Suppose that limt→∞ X(t) exists and
| det(X(t))| > α > 0 for each t ≥ t0 and some positive constant α. Then (2.1)
and (2.2) are asymptotically equivalent.

Proof. It follows from Lemma 2.2 that (2.1) has linear asymptotic equilibrium,
and so (2.1) and (2.2) are asymptotically equivalent by Theorem 2.11. □

Now, we consider the nonhomogenous differential system of (2.1)

(2.6) y′(t) = A(t)y(t) + g(t),

where g(t) is a continuous function on R+.
We prove that (2.1) and (2.6) are asymptotically equivalent when the con-

dition on linear asymptotic equilibrium is replaced by the condition on strong
stability.

Theorem 2.15. Assume that (2.1) is strongly stable and
∫∞
0

|g(t)|dt < ∞.
Then (2.1) and (2.6) are asymptotically equivalent.

Proof. Let x(t, t0, x0) be any solution (2.1). Put p(t) =
∫ t

t0
X(t0)X

−1(s)g(s)ds.

Then we easily see that p(t) is convergent because
∫∞
t0

|g(t)|dt < ∞ and X−1(t)

is bounded. Thus there exists the solution y(t, t0, y0) of (2.6) with the initial
value y0 = x0 − p∞(t0) satisfying

y(t) = X(t)X−1(t0)y0 +X(t)

∫ t

t0

X−1(s)g(s)ds

= x(t, t0, x0) +X(t)X−1(t0)[−p∞(t0) + p(t)]

= x(t) + o(1) as t → ∞,
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where limt→∞ p(t) = p∞(t0).
Conversely, letting x0 = y0 + p∞(t0), the similar asymptotic formula holds.

This completes the proof. □

Corollary 2.16. Suppose that (2.1) has linear asymptotic equilibrium and∫∞
0

|g(t)|dt < ∞. Then (2.1) and (2.6) are asymptotically equivalent.

3. Examples

In this section we give several examples as the illustrations of Section 2.

Example 3.1. Let us consider linear differential system

x′(t) = A(t)x(t) =

( −e−t

2+e−t 0

0 0

)
x(t)(3.1)

and its adjoint system

w′(t) = −AT (t)w(t) =

(
e−t

2+e−t 0

0 0

)
w(t).(3.2)

Then (3.1) and its adjoint system (3.2) are asymptotically equivalent.

Proof. Note that a fundamental matrix X(t) of (3.1) is given by X(t) =(
2+e−t

3 0
0 1

)
. Thus limt→∞ X(t) =X∞ exists and is invertible. Hence (3.1) has

linear asymptotic equilibrium, and (3.1) and (3.2) are asymptotically equivalent
by Corollary 2.5. □

However we note that linear differential system (2.1) and its adjoint system
(2.3) are not asymptotically equivalent in general under the assumption of
strong stability of (2.1). The following example shows this fact.

Example 3.2. Let us consider the linear differential system

x′(t) = A(t)x(t) =

(
− sin t 0

0 cos t

)
x(t)(3.3)

and its adjoint system

w′(t) = −AT (t)w(t) =

(
sin t 0
0 − cos t

)
w(t), t ≥ t0 ≥ 0,(3.4)

where A(t)=
(− sin t 0

0 cos t

)
is a continuous 2×2 matrix and −AT (t)=

(
sin t 0
0 − cos t

)
.

Then (3.3) and (3.4) are not asymptotically equivalent.

Proof. Note that X(t) and X−1(t) of (3.3) are given by

X(t) =

(
exp(cos t− 1) 0

0 exp(sin t)

)
, t ≥ t0 = 0,

X−1(t) =

(
exp(1− cos t) 0

0 exp(− sin t)

)
= W (t)T ,
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respectively, where W (t) is a fundamental matrix of (3.4). Then there exists a
positive constant M ≥ e such that

|X(t)| ≤ M, |X−1(t)| ≤ M, t ≥ 0.

Thus (3.3) is strongly stable.
Suppose that for the solution x(t, t0, x0) of (3.3) with the initial value x1(t0)

̸= 0 there exists a solution w(t, t0, w0) of (3.4) such that the following asymp-
totic relationship holds:

x(t) = w(t) + o(1) as t → ∞.

Then we obtain

x(t) = X(t)

(
x1(t0)
x2(t0)

)

=



(
e−2x1(t0)
x2(t0)

)
, t = (2k − 1)π

(
x1(t0)
x2(t0)

)
, t = (2k)π, k ∈ Z

= w(t) = [X−1(t)]T
(
w1(t0)
w2(t0)

)

=



(
e2w1(t0)
w2(t0)

)
, t = (2k − 1)π

(
w1(t0)
w2(t0)

)
, t = (2k)π, k ∈ Z.

Thus we have

x(t) =

(
e−2x1(t0)
x2(t0)

)
=

(
e2w1(t0)
w2(t0)

)
, t = (2k − 1)π(3.5)

=

(
x1(t0)
x2(t0)

)
=

(
w1(t0)
w2(t0)

)
, t = (2k)π, k ∈ Z(3.6)

= w(t) + o(1) as k → ∞.

From (3.5) and (3.6) we obtain

x1(t0) = e4w1(t0) = e4x1(t0), k ∈ Z.

Thus we have x1(t0) = 0. This contradicts the fact x1(t0) ̸= 0. Hence (3.3)
and (3.4) are not asymptotically equivalent. □

Example 3.3. To illustrate Corollary 2.8, we consider two linear systems

x′(t) = A(t)x(t) =

(
− sin t 0

0 cos t

)
x(t), t ≥ t0 = 0(3.7)
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and

y′(t) = B(t)y(t) =

(
− sin t+ aeat

2+eat 0

0 cos t

)
y(t), t ≥ t0 = 0,(3.8)

where A(t) =
(− sin t 0

0 cos t

)
and B(t) =

(
− sin t+ aeat

2+eat 0

0 cos t

)
with a negative

constant a. Then (3.7) and (3.8) are asymptotically equivalent.

Proof. We note that A(t) and B(t) are t∞-similar with S(t) = I and F (t) =(
aeat

2+eat 0

0 0

)
. Also, since fundamental matrices X(t) of (3.7) and Y (t) of (3.8)

are given by

X(t) =

(
exp(cos t− 1) 0

0 exp(sin t)

)
,

Y (t) =

(
(2+eat)

3 exp(cos t− 1) 0
0 exp(sin t)

)
,

respectively, both (3.7) and (3.8) are strongly stable. Then we obtain the
asymptotic formula

Y (t) = X(t)

[
I +

∫ t

0

X−1(s)F (s)Y (s)ds

]
= X(t)

[
I +

(∫∞
0

(ae
as

3 )ds 0
0 0

)
−
(∫∞

t
(ae

as

3 )ds 0
0 0

)]
= X(t)[I + P (0)− P (t)]

= X(t)[I + P (0) + o(1)],

where P (t) =
( ∫ ∞

t
( aeas

3 )ds 0
0 0

)
.

Furthermore, we have

|P (0)| =
∣∣∣∣ limt→∞

(∫ t

0
(ae

as

3 )ds 0
0 0

)∣∣∣∣ = lim
t→∞

∣∣∣∣∫ t

0

aeas

3
ds

∣∣∣∣
=

∣∣∣∣−1

3

∣∣∣∣ = 1

3
.

Since |P (0)| < 1, I + P (0) is invertible, and so, for any solution x(t, 0, x0) of
(3.7), there exists the unique solution y(t, 0, y0) of (3.8) with y0 = [I+P (0)]−1x0

such that the asymptotic formula holds. Also, the converse holds by letting
x0 = [I + P (0)]y0. □

We give an example to illustrate Theorem 2.15.

Example 3.4. Consider the homogeneous differential system

(3.9) x′(t) = A(t)x(t) =

(
− sin t 0

0 cos t

)
x(t)
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and nonhomogeneous differential system

(3.10) y′(t) = A(t)y(t) + g(t) =

(
− sin t 0

0 cos t

)
y(t) +

(
e−t

e−t

)
.

Then (3.9) and (3.10) are asymptotically equivalent.

Proof. Since a fundamental matrix X(t) of (3.9) is given by

X(t) =

(
e(cos t−1) 0

0 esin t

)
, t ≥ t0 = 0,

(3.9) is strongly stable. Also, the solution y(t, t0, y0) of (3.10) is given by

y(t) = X(t, 0)y0 +

∫ t

0

X(t, s)g(s)ds

=

(
e(cos t−1) 0

0 esin t

)[
y0 +

∫ t

t0

(
e(1−cos s) 0

0 e− sin s

)(
e−s

e−s

)
ds

]
=

(
e(cos t−1) 0

0 esin t

)[
y0 +

(
e
∫ t

0
e(− cos s−s)ds∫ t

0
e(− sin s−s)ds

)]
, t ≥ t0 = 0.

Note that
∫∞
0

e(− cos s−s)ds < ∞ and
∫∞
0

e(− sin s−s)ds < ∞. Since
∫∞
t0

e−sds <

∞ and (3.9) is strongly stable, (3.9) and (3.10) are asymptotically equivalent
by Theorem 2.15. □
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