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PERMUTING TRI-f-DERIVATIONS IN LATTICES

HASRET YAZARLI AND MEHMET ALI OzTURK

ABSTRACT. The aim of this paper is to introduce the notion of permuting
tri- f-derivations in lattices and to study some properties of permuting tri-
f-derivations.

1. Introduction

Lattices play an important role in many fields such as information theory,
information retrieval, information access conrols and cryptanalysis ([2], [6],
[20]). Recently the properties of lattices were widely researched ([1], [2], [5],
[10], [12], [20], [22]). In the theory of rings and near rings, the properties of
derivations are an important topic to study ([3], [4], [19]). In [21], G. Szdsz
introduced the notion of derivation on a lattice and discussed some related
properties. Y. B. Jun and X. L. Xin [13] applied the notion of derivation in
ring, near ring and lattice theory to BCl-algebras. In [24], J. Zhan and Y.
L. Liu introduced the notion of left-right (or right-left) f-derivation of a BCI
algebra and investigated some properties.

Recently, the notion of f-derivation, symmetric bi-derivations and permut-
ing tri-derivations in lattices are introduced and proved some results ([7], [9],
and [18]). The goal of this paper is to introduce the notion of permuting
tri- f-derivations in lattices and to study some properties of permuting tri-f-
derivations.

2. Preliminaries

Definition 1 ([5]). Let L be a nonempty set endowed with operations A and
V. By a lattice (L, A, V), we mean a set L satisfying the following conditions:
zAx=xz,zVr=u,
(i) zAy=yAz,zVy=yVuz,
(i) (xAy)Az=a2A(YyAz), @Vy)Vz=aV(yV2),
(iv) (xAy) Ve ==z, (xVy) ANz =z for all z,y,z € L.
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Definition 2 ([5]). Let (L, A, V) be a lattice. A binary relation < is defined
by x <yifandonlyifz Ay=2zand zVy=y.

Lemma 1 ([22]). Let (L, A,V) be a lattice. Define the binary relation < as the
Definition 2. Then (L,<) is a poset and for any x,y € L, x Ay is the g.L.b. of
{z,y} and zV y is the l.u.b. of {z,y}.

Definition 3 ([5]). A lattice L is distributive if the identity (i) or (ii) holds:
()zA(yve)=(@Ay)V(zAz),
(i)zV(yAz)=(zVy) A(zVz).
In any lattice, the conditions (i) and (ii) are equivalent.

Definition 4 ([1]). A lattice L is modular if the identity (i) holds:
(i)Ifx <z thenaV(yAz)=(xVy)Az

Definition 5. Let L be a lattice. A mapping D : L x L x L — L is
called permuting if it is satisfies following conditions D (x,y, z) = D (z, z,y) =
D (y,z,2) =D (y,z,2) =D (z,z,y) = D (z,y,z) for all z,y,z € L.

A mapping d: L — L defined by d(x) = D (z,x,x) is called the trace of D,
where D is a permuting mapping.

Definition 6. Let L be a lattice. A permuting mapping tri-derivation if
D(xANw,y,z) = (D (z,y,2) ANw) V (z A D (w,y,z))
for all x,y,z,w € L.
It is obvious that D is a permuting tri-derivation then D satisfies the rela-

tions D (x,y Aw, z) = (D (x,y,2) Aw)V(y AD(z,w,2)) and D (z,y,z Aw) =
(D (z,y,2) Aw) V (z A D (x,y,w)) for all z,y,z,w € L.

3. The permuting tri- f-derivations in lattices

The following definitions introduce the notion of permuting tri- f-derivation
for a lattice.

Definition 7. Let L be a lattice. A permuting mapping D : L x L x L — L is
called permuting tri- f-derivation if there exists a function f : L. — L such that

D(zAw,y,z) = (D (z,y,2) A f (w)) V (f(z) AD(w,y,2))
for all x,y,z,w € L.

Example 1. Let L be a lattice of following Figure 1 and define mappings D
and f on L by
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2 (y,%) = (0,0,0)
2, (z,y,2) =(0,0,1) or (0,1,0) or (1,0,0)
2, (z,y,2) =(0,0,2) or (0,2,0) or (2,0,0)
1, (z,9,2) = (1,1,1)
0, (z,9,2) =(2,2,2)
D(m,y,z) = L (IL’,y,Z) (Ovlal) or (170a1) or (171a0)
0, (z,y,2) =(0,2,2) or (2,0,2) or (2,2,0)
2, (z,y,2) =(0,1,2) or (1,0,2) or (1,2,0)
or (2,1,0) or (2,0,1)
2, (r,y,2) =(1,1,2) or (1,2,1) or (2,1,1)
Oa (ZL‘ Y,z )* (17232) or (27132) or (27231)
and
2,x=0
flx)y=4¢ Lz=1
0,z =2.

We can see that D is a permuting tri f-derivation on L. But D is not
permuting tri-derivation. Because

D(0A1,0,2)=D(0,0,2) =
also
D(0A1,0,2)=(D(0,0,2,) A1)V (0AD(1,0,2))
=(2A1)V(0A2)
=1v0=1.
0—=+1—=2
Figure 1

Proposition 1. Let L be a lattice and D be a permuting tri-f-derivation on
L. Then the following identities hold for all x,y,z,w € L:

(i) D (wy»Z)Sf(w%D(%y,z)Sf(y)CmdD(:vzh) (Z)
gu) (z,y,2) AD(w,y,2z) < D(x ANw,y,z) < D (z,y,2) VD (w,y,z).

iii) D (z Aw,y,z) < f(z) V f (w).
(iv) If L has a least element 0, then f(0) = 0 implies D(0,y,z) = 0 for all
y,z € L.
Proof. (i) Since x Az = z for all = € L, we have
D(z,y,2) = D(z Ay, z)
= (D(z,y,2) A f(@)) vV (f(2) A D(2,y,2)
= D(z,y,2) A f(x).
Therefore D (z,y, z) (x) for all z,y, z € L. Similarly, we see that D (z,v, z)

</
< f(y) and D (z,y,2) < f(2) for all z,y,2 € L.
(ii) Since D(z,y,2) < f(z) and D (w,y, z) < f (w), from (i), we have

D (z,y,2) N D (w,y,2) < f(z) A D (w,y,2)
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and
D (x,y,2) ND(w,y,z) < f(w) A D (z,y, z)
for all x,y, z,w € L. Hence
D(z,y,2) AD (w,y,2) < (f () A D (w,y,2)) V (f (w) A D (2,9, 2))
=D(xAw,y,z).
Furthermore, since f (z) A D (w,y,2) < D(w,y,z) and f(w) A D (z,y,z) <
D(z,y,z), we get
(f (@) AD(w,y,2)) vV (f (w) AD(,y,2)) < D (2,y,2) V D (w,y,2) .
That is, D (z Aw,y,z) < D (2,y,2) V D (w,y, 2).
(iii) Since D(z,y,2) A f (w) < f (w) and f (z) A D (w,y,2) < f (), we get
(D (z,y,2) A f () V (f () AD (w,y,2)) < fx) V f(w).
That is, D (z ANw,y,z) < f(z)V f(w).
(iv) Since 0 is the least element of L. We have
D(0,y,2) = D(0A0,y,2)
= (D(0,y,2) A f(0)) V(f(0)AD(0,y,2))
=0v0=0
forall y,z € L (]

Corollary 1. Note that,
D(z,z,2) =D (zxAz,z,z) = (D(z,z,z) A f(z)) V (f () AD (z,x,2))
=D (z,z,z) A\ f (x)
for all x € L. That is, d(x) < f (x) for all x € L.

Definition 8. Let L be a lattice and D be a permuting tri- f-derivation on L.
(i) If x < w implies D (x,y,2z) < D (w,y,z), then D is called an isotone
permuting tri- f-derivation.
(ii) If D is one-to-one, D is called a monomorfic permuting tri- f-derivation.
(iii) If D is onto, D is called an epic permuting tri- f-derivation.

Proposition 2. Let L be lattice, D be a permuting tri-f-derivation on L and
1 be the greatest element of L. Then the following identities hold:

(1) [ff(l‘) <D(1,y,z), then D(x’ywz) = f(l‘)
(ii) If f () > D (1,y,2) and f(1) =1, then D (x,y,z) > D (1,y, 2).

Proof. (i) Since
D (xz,y,2) =D (xA1l,y,z2)
=D (@y,z)AfQ)V(f(z)AD(1L,y,2))
=D (z,y,2)V f(x),
we get f () < D (zx,y,2). From Proposition 1(i), we obtain D (x,y, z) = f ().
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(ii) Since
D(z,y,2) =D (xAN1,y,2)
=D (z,y,2) N fFQ)V(f(2)AD(1,y,2))
=D(z,y,2)VD(1,y,2),
we get D (1,y,2) < D(x,y,z) for all z,y,z € L. O

Proposition 3. Let L be a lattice and D be a permuting tri-f-derivation on
L. If f is an increasing function, then w < x and D (x,y, z) = f (z) imply that
D (w,y,2) = f (w).

Proof. Suppose w < z, then x A w = w. Thus
D(w,y,2z) = D (z Aw,y,z)
(D (z,y,2) A f (w) vV (f () AD(w,y,2))
) A

O

Proposition 4. Let L be a lattice and D be a permuting tri-f-derivation on
L. Then for any x,y,z,w € L the followings hold:
(i) If D is isotone, then

D (z,y,z) =D (x,y,2) V(D (xVw,y,z)A f(x)).
(ii) If f(x Vw) = f(x) V f(w), then
D (x,y,2) =D (x,y,2) V(D (xVw,y,z)A f(x)).
(iii) If f is an increasing function, then
D (z,y,2) =D (z,y,2) V(f (&) AD (zVw,y,z)).
Proof. (i) Since D is an isotone permuting tri- f-derivation then we have
D (z,y,z) =D ((x Vw) Azx,y,2)
=D @Vvwy,2)Af(x)V(f(zVw)AD(y,z))
=D (xVwyz)Af(x)VD(zy,z).
(ii) Since D (x,y,2) < f(z) < f(x) V f (w), we get
D (xz,y,2z) =D ((x Vw) Ax,y,2)
= (D@@Vw,y,2)Af(x)V(f(zVw)AD(y,z)
=D (xVw,y2z)Af(x)VD(xy,z).
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(iii) Since f is an increasing function and z < z V y then f(x) < f(zVy)
and so;
D(z,y,2) = D((z Vw) Az,y,z)
=D (xVwuy,2)Af(x)V(f(@Vw)AD(,y,z)
=(D(@Vw,y,2)Af(@)VD(y,z). O
Proposition 5. Let L be a lattice, D be an isotone permutating tri-f -derivation
and f be a decreasing function. If D (z,y,2z) = f () and D (w,y,z) = f(w),
then D (z V w,y,2z) = f (z) V [ (w).
Proof. Since z < zVw, w < x Vw and D is isotone, we ge D(z,y,2) <
D(zVw,y,z)and D (w,y,z) < D (zVw,y,z). Hence f (x)V f (w) < (x\/w
y,2). Also, D (z V w,y,2) < f(zVw) < f(x)Vf(w). Therefore D (z V w,y, z)
=f(z)V f(w). 0
Theorem 1. Let L be a lattice with greatest element 1 and D be a permuting
tri-f -derivation on L and f(x Ay) = f(x) A f(y). The following conditions
are equivalent:
(i) D is an isotone permuting tri-f-derivation.
(ii) D(2,y,2) VD (w,y,2) <D (xVwy,z2).
(iii) D (z,y,2) = f(x) AD(Ly,z).
(iv) D(xz Aw,y,2z) = D (z,y,2) A D (w,y,2).

Proof. (i) = (ii) Suppose that D is an isotone permuting tri- f-derivation.
Since z < zVw and w < z V w, we have D (z,y,2) < D(xzVw,y,z) and
D (w,y,z)<D(zVw,y,z). Therefore, D (z,y,2)VD (w,y,2) <D (x V w,y, z) .

(i) = (i) Suppose that D (x,y,2) V D (w,y,z) < D (zVw,y,z) and
r < w, Since

= D (w7 y’ Z) )

we get D is isotone.

(i) = (iii) Suppose that D is an isotone permuting tri- f-derivation. Since
D (z,y,2) < D(1,y,2), we get D(x,y,2) < f(z) AN D(1,y,z) by Proposition
1(i). From Proposition 4(i), for w = 1 we get

D(z,y,2) = (D(Ly,2) A f(x)) VD (x,y,2)
=D (Ly,z)A f(x).
(ili) = (iv) From (i),
D (z Aw,y, ) f@Aw)AD(Ly,z)
f@)Nfw)AD(1,y,2)

= (f () AD(1,y,2)) A(f (w) AD(1,y,2))
=D (z,y,2) ND (w,y,2).
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(iv) = (i) Let D(zAw,y,2) = D(z,y,2) A D(w,y,z) and 2 < w.
Then, we get D (z,y,2) = D (x Aw,y,2) = D (z,y,2) A D (w,y, z) . Therefore,
D (z,y,2) < D (w,y,2). O

Theorem 2. Let L be a modular lattice and D be a permuting tri-f-derivation
on L. Then,
(i) D is an isotone if and only if D (x Aw,y,z) = D (x,y,2) A D (w,y, 2).
(ii) If D is an isotone and f (x Vw) = f (z)V f (w), then D (z,y,2) = f (x)
implies D (x V w,y,z) = D (z,y,2) V D (w,y,2).
Proof. (i) Let D be isotone. Since z Aw < z and z A w < w, we get
D(a:/\w,y,z) < D(%Z/,Z) /\D(w7yaz) . Then,

= (D (z,y,2) AD (w,y,2)) A(f (x) A f (w))
= (D (2,y,2) A f (W) A(f () A D (w,y, 2))

S (D (z,y,2) A f(w)) V(D (w,y,2) A f (2))
=D(zxAw,y,z2).

D (z,y,2) AN D (w,y, 2)

Thus, we obtain D (z Aw,y,2) = D (z,y,2) A D (w,y,2).

Conversely let D (z Aw,y,z) = D(z,y,2) A D (w,y,2) and x < w. Since
D(z,y,2) = D(z Aw,y,z) = D (x,y,2) A D (w,y,2), we obtain D (z,y,2) <
D (w,y,z).

(ii) Suppose that D is isotone and D (z,y,z) = f (x). From Proposition 4
and since L is a modular lattice, we get

D (w,y,z) = D (w,y,2) V (f (w) AD(xVw,y,z))
=f(w)AD(xVw,y,z).
Therefore, we get
D (z,y,2)V D (w,y,2) = D(z,y,2) V(f (w) AD (zVw,y,z))
=(D(z,y,2)V f(w)) AD(zVwy,z2)
=(f(@)Vfw)AD@Vw,y,z)
=f(xVw)AD((xzVuw,y,z)
—D(xvu,y2)
by hypothesis. ([

Theorem 3. Let L be a distributive lattice and D be a permuting tri-f-deriva-
tion on L where f(x Vw) = f(x)V f(w). Then the followings hold:

(i) If D is isotone, then D (x Aw,y,z) = D (z,y,2) A D (w,y, 2).

(ii) If D is isotone if and only if D (x V w,y,z) = D (z,y,2) V D (w,y, 2).

Proof. (i) Since D is isotone D (x Aw,y,z) < D (z,y,2) A D (w,y, z). From
Proposition 1, we have
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D (z,y,2) A D (w,y,2)

(D (z,y,2) A f(x)) A(f (w) A D (w,y, 2))
(D (2,y,2) A f(w)) A(f (x) AD(w,y,2))
(D (2,y,2) A f () V (f (x) AD(w,y,z))
D(xAw,y,z).

IA

at is, D (x Aw,y,2) = D (z,y,2) A D (w,y, 2).
(ii) Let D be isotone. From (i), we have D (x Aw,y,z) = D (x,y,2) A

D (w,y, z). From Proposition 1 and Proposition 4, we obtain

D (w,y,z) = D (w,y,2) V (f (w) A D (zVw,y,2))
= (D(w’yvz)\/f(w))/\(D(w7yaz)\/D(wi’y7z))
=f(w)AD(zVw,y,z).

Similarly

Th

D(z,y,2) = f(x) AD(zVw,y,z).
erefore, we get

D(z,y,2) VD (w,y,z) = (f (&) AD(xVw,y,2)) V(f (w)AD(xVw,y,z))

= (F @)V f (@) AD (2 Vw,y,2)
=fxVw)AD(zVuw,y,z)
=D(xVw,y,z).

Conversely, let D (zVw,y,z) = D(x,y,z) VD (w,y,2) and z < w. Since

D(w,y,z) = D(xVw,y,z) = D(x,y,2) V D(wy,z), we get D (z,y,2z) <
D (w,y, z). O
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