DOI QR코드

DOI QR Code

Antihepatotoxic and Antigenotoxic Effects of Herb Tea Composed of Chrysanthemum morifolium Ramat.

국화차를 포함하는 허브차의 CCl4로 유도된 간세포손상 보호 및 항유전독성 효과

  • Lee, Hyun-Jung (Dept. of Food and Nutrition, Kyungnam University) ;
  • Hwang, Young-Il (Dept. of Food Science and Biotechnology, Kyungnam University) ;
  • Park, Eun-Ju (Dept. of Food and Nutrition, Kyungnam University) ;
  • Choi, Sun-Uk (Dept. of Food Science and Biotechnology, Kyungnam University)
  • 이현정 (경남대학교 식품영양학과) ;
  • 황용일 (경남대학교 식품생명학과) ;
  • 박은주 (경남대학교 식품영양학과) ;
  • 최선욱 (경남대학교 식품생명학과)
  • Received : 2010.10.14
  • Accepted : 2010.11.30
  • Published : 2011.01.31

Abstract

The flower of Chrysanthemum morifolium Ramat. with antioxidant, anticancer, and anti-inflammatory functions has been a widely used traditional herb as a healthy beverage and medicine. The aim of the present study was to investigate a herb tea consisting of C. morifolium Ramat., Corni fructus and Schizandra chinensis Baillon for its hepatoprotective activity against $CCl_4$-induced toxicity in freshly isolated rat hepatocytes and antigenotoxic effect against oxidative stress induced DNA damage in human leukocytes. Three different compositions of the herb tea (Mix I, II, and III) were prepared by extracting with water at $90^{\circ}C$. Freshly isolated rat hepatocytes were exposed to $CCl_4$ along with/without various concentrations of each tea. Protection of rat primary cells against $CCl_4$-induced damage was determined by the MTT assay. The significant antihepatotoxic effect of the tea was shown in Mix I and II. The increased transaminase (AST and/or ALT) release in media of $CCl_4$ treated hepatocytes was significantly lowered by all the teas tested. The effect of the tea on DNA damage in human leukocytes was evaluated by Comet assay. All teas showed a protective effect against $H_2O_2$-induced DNA damage. From these results, it is assumed that herb tea based on C. morifolium Ramat., Corni fructus and Schizandra chinensis Baillon exerted antihepatotoxic and antigenotoxic effects.

최근 국내의 건강기능성 추출물을 이용한 차 음료 시장이 확대되고 있고, 국화, 산수유 및 오미자는 이들의 높은 생리 활성과 기호도로 인하여 그 활용도가 더욱 높을 것으로 기대된다. 현재까지 국화, 산수유 및 오미자의 개별적인 생리활성 연구는 활발히 이루어지고 있는 반면, 이들을 혼합하여 제조한 차류의 효능에 대한 연구는 아직 보고되지 않고 있는 실정이다. 따라서 본 연구에서는 $CCl_4$ 처리에 의해 손상된 간세포에 대한 국화차 조성물의 간 기능 보호효과와 인체백혈구에서 $H_2O_2$로 유도된 산화적 DNA 손상에 대한 국화차 조성물의 항유전독성 효과를 검증하고자 하였다. $CCl_4$로 유도된 간세포 독성에 대해 국화차 조성물 I형, II형은 유의적인 간세포 보호효과를 나타내었으며, 국화차 조성물 III형은 $CCl_4$처리군보다 약간 높은 세포생존율을 보였으나 유의적이지는 않았다. $CCl_4$를 처리에 의해 증가한 간세포 배지 내 AST 및 ALT 활성은 국화차 조성물에 의해 배지 내 효소활성을 감소시킴으로 간세포 보호효과가 있는 것으로 사료되며, 그 효과는 AST 효소활성에 더 큰 영향을 미치는 것으로 나타났다. 특히 국화차 조성물 I형의 0.01 mg/mL 농도에서 가장 높은 AST 및 ALT 유리 억제능을 나타내었다. 이 결과로 국화추출물의 $CCl_4$ 유도에 의해 AST>ALT 순으로 유리가 증가되는 것으로 여겨진다. 국화차 조성물 I형의 $1\sim50{\mu}g$/mL, 국화차 조성물 II의 $50{\mu}g$/mL 및 국화차 조성물 III 의 $1\sim50{\mu}g$/mL 농도 범위에서 산화적 스트레스로 유도된 인체 백혈구 DNA 손상에 대한 보호효과를 나타내었다. 이러한 결과를 통하여 국화차 조성물의 간세포 손상보호효과와 산화적 스트레스에 대한 인체 백혈구 DNA 손상 보호능을 검증할 수 있었다.

Keywords

References

  1. Hu CQ, Chen K, Shi Q, Kilkuskie RE, Cheng YC, Lee KH.1994. Anti-AIDS agents, 10. Acacetin-7-O-beta-D-galactopyranoside, an anti-HIV principle from Chrysanthemum morifolium and a structure-activity correlation with some related flavonoids. J Nat Prod 57: 42-51. https://doi.org/10.1021/np50103a006
  2. Sassi AB, Harzallah-Skhiri F, Bourgougnon N, Aouni M.2008. Antimicrobial activities of four Tunisian Chrysanthemum species. Ind J Med Res 127: 183-192.
  3. Marongiu B, Piras A, Porcedda S, Tuveri E, Laconi S,Deidda D, Maxia A. 2009. Chemical and biological comparisons on supercritical extracts of Tanacetum cinerariifolium (Trevir) Sch. Bip. with three related species of chrysanthemums of Sardinia (Italy). Nat Prod Res 23: 190-199. https://doi.org/10.1080/14786410801946221
  4. Park NY, Lee KD, Jeong YJ, Kwon JH. 1998. Optimization of extraction conditions for physicochemical properties of ethanol extracts from Chrysanthemum boreale. J KoreanSoc Food Sci Nutr 27: 585-590.
  5. Yu JS, Hwang IG, Woo KS, Chang YD, Lee CH, Jeong JH,Jeong HS. 2008. Physicochemical characteristics of Chrysanthemum indicum L. flower tea according to different pan-firing times. Korean J Food Sci Technol 40: 297-302.
  6. Park NY, Kwon JH, Kim HK. 1998. Optimization of extraction conditions for ethanol extracts from Chrysanthemum morifolium by response surface methodology. KoreanJ Food Sci Technol 31: 1189-1196.
  7. Nam SH, Yang MS. 1995. Antibacterial activities of extracts from Chrysanthemum boreale M. J Agric Food Chem 38: 269-272.
  8. Nam SH, Yang MS. 1995. Isolation of cytotoxic substances of extracts from Chrysanthemum boreale M. J Agric Food Chem 38: 273-277.
  9. Seo KI, Lee SW, Yang KH. 1999. Antimicrobial and antioxidative activities of Corni fructus extracts. Korean JPostharvest Sci Technol 6: 99-103.
  10. Park YK, Whang WK, Kim HI. 1995. The antidiabetic effects of extracts from Cornus officinalis seed. Chung-Ang J Pharm Sci 9: 5-11.
  11. Kim YE, Lee YC, Kim HK, Kim CJ. 1997. Antioxidative effect of ethanol fraction for several Korean medicinal planthot water extracts. Korean J Food Nutr 2: 141-144.
  12. Kim OK. 2005. Antidiabetic and antioxidative effects of Corni fructus in streptozotocin-induced diabetic rats. KoreanJ Oil Chem Soc 22: 157-167.
  13. Kim BH, Park KU, Kim JY, Jeong IY, Yang GH, Cho YS,Lee ST, Seo KI. 2004. Purification and characterization of anticarcinogenic compound from Corni fructus. Korean J Food Sci Thechnol 36: 1001-1007.
  14. Kim YD, Kim HK, Kim KJ. 2003. Antimicrobial activity of solvent fraction from Cornus officinalis. J Korean Soc Food Sci Nutr 32: 829-832. https://doi.org/10.3746/jkfn.2003.32.6.829
  15. Mok CK. 2005. Quality characteristics of instant tea prepared from spray-dried Omija (Schizandra chinensis Baillon) extract/grape juice mixture. Food Eng Prog 9: 226-230.
  16. Oh SL, Kim SS, Min BY, Chung DH. 1990. Composition of free sugars, free amino acid, non-volatile organic acids and tannins in the extracts of L. chinesis M., A. acutiloba K., S. chinensis B. and A. sessiliflorum S. Korean J FoodSci Technol 22: 76-81.
  17. Lee JS, Lee SW. 1991. The studies of composition of fatty acids and antioxidant activities in parts of Omija (Schizandrachinensis Baillon). Kor J Dietary Culture 6: 147-153.
  18. Jung GT, Ju IO, Choi JS, Hong JS. 2000. The antioxidative, antimicrobial and nitrite scavenging effects of Schizandra chinensis Pyprecht (Omija) seed. Korean J Food SciTechnol 32: 928-935.
  19. Kim JS, Choi SY. 2008. Physicochemical properties and antioxidative activities of Omija (Schizandra chinensis Baillon). Korean J Food & Nutr 21: 35-42.
  20. Fukushima M, Kimura S. 1989. Studies on cosmetic ingredients from crude druge (I). Shoyakugaku Zasshi 43:142-147.
  21. Jang EH, Pyo YH, Ahn MS. 1996. Antioxidant effect of Omija (Schizandra chinensis Baillon) extracts. Korean J Soc Food Sci 12: 372-376.
  22. Lee SH, Lim YS. 1997. Antimicrobial effects of Schiznadra chinensis extract against Listeria monocytogenes. Kor J Appl Microbiol Biotechnol 25: 442-447.
  23. Lee SH, Lim YS. 1998. Antimicrobial effects of Schizandra chinensis extract on pathogenic microorganism. J KoreanSoc Food Sci Nutr 27: 239-243.
  24. Ji WD, Jeong MS, Chung HC, Choi UK, Jeong WH, KweonDJ, Kim SY, Chung YG. 2001. Growth inhibition of water extract of Schizandra chinensis Baillon on the bacteria. J Food Hyg Safety 16: 89-95.
  25. Lee JY, Min YK, Kim HY. 2001. Isolation of antimicrobial substance from Schizandra chinensis Baillon and antimicrobial effect. Korean J Food Sci Technol 33: 389-394.
  26. Jeon YH, Kil JH, Lim SM, Kim MH, Kim MR. 2008.Analysis of antioxdative activity and antimutagenic effect of ethanol extract from Schizandra chinensis Baillon. J East Asian Soc Dietary Life 18: 746-752.
  27. Do JR, Kim SB, Park YH, Park YB, Kim DS. 1993. The nitrite-scavenging effects by the component of traditional tea materials. Korean J Food Sci Technol 25: 530-534.
  28. Wolf PL. 1999. Biochemical diagnosis of liver diseases.Indian J Clin Biochem 14: 59-90. https://doi.org/10.1007/BF02869152
  29. McCay PB, Lai EK, Poyer Jl, DuBose CM, Janzen EG. 1993.Oxygen and carbon-centered free radical formation during carbon tetrachloride metabolism. Observation of lipid radicals in vivo and in vitro. J Biol Chem 259: 2135-2143.
  30. Halliwell B, Gutteridge JM. 1985. The importance of free radicals and catalytic metal ions in human disease. Mol Aspects Med 8: 89-193. https://doi.org/10.1016/0098-2997(85)90001-9
  31. Poirier MC, Weston A. 2002. DNA damage, DNA repair, and mutagenesis. In Encyclopedia of Cancer . Bertino JR, ed. Academic Press, Boston, MA, USA. p 79-87.
  32. Helim KE, Tagliaferro AR, Bobilya DJ. 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13: 572-584. https://doi.org/10.1016/S0955-2863(02)00208-5
  33. Lee JS, Kim HJ, Lee YS. 2003. A new anti-HIV flavonoid glucuronide from Chrysanthemum morifolium. Planta Med 69: 859-861. https://doi.org/10.1055/s-2003-43207
  34. Matsuda H, Morikawa T, Toguchida I, Harima S, YoshikawaM. 2002. Medicinal flowers. VI. Absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycoside from the flowers of Chrysanthemum indicum L.: their inhibitory activities for rat lens aldose reductase.Chem Pharm Bull (Tokyo) 50: 972-975. https://doi.org/10.1248/cpb.50.972
  35. Hertog MG, Feskens EJ, Hollman PC, Katan MB, KromhoutD. 1993. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342: 1007-1011. https://doi.org/10.1016/0140-6736(93)92876-U
  36. Ichihara A, Nakamura T, Tanaka K. 1982. Use of hepatocytes in primary culture for biochemical studies on liver functions. Mol Cell Biochem 43: 145-160.
  37. Singh PN, McCoy MT, Tice RR, Schneider EL. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175: 184-191. https://doi.org/10.1016/0014-4827(88)90265-0
  38. Kim YS, Park KH. 1995. Screening method for antihepatotoxic activity using $CCl_4$-induced cytotoxicity in primary cultured rat hepatocytes. Kor J Pharmacogn 26: 51-56.
  39. Kim YS, Park KH. 1994. Effect of traditional drugs on $CCl_4$-induced cytotoxicity in primary cultured rat hepatocytes.Kor J Pharmacogn 25: 388-394.
  40. Seo KI, Lee SW, Yang KH. 1999. Antimicrobial and antioxidative activities of Corni Fructus extracts. Korean JPostharvest Sci Technol 6: 99-103.
  41. Cho HE, Choi YJ, Cho EK. 2010. Antioxidant and nitrite scavenging activity and α-glucosidase inhibitory effect of water extract from Schizandra chinensis Baillon. J Korean Soc Food Sci Nutr 39: 481-486. https://doi.org/10.3746/jkfn.2010.39.4.481
  42. Woo KS, Yu JS, Hwang IG, Lee YR, Lee CH, Yoon HS,Lee JS, Jeong HS. 2008. Antioxidative activity of volatile compounds in flower of Chrysanthemum indicum, C. morifolium, and C. zawadskii. J Korean Soc Food Sci Nutr 37: 805-809. https://doi.org/10.3746/jkfn.2008.37.6.805

Cited by

  1. Effect of Dendranthema indicum Extracts on Cell and DNA Damage Induced by Oxidative Stress vol.21, pp.12, 2011, https://doi.org/10.5352/JLS.2011.21.12.1698
  2. Acute Oral Toxicity and Skin Irritation Studies on Natural Dyes Extracted from Chrysanthemum vol.27, pp.2, 2012, https://doi.org/10.13103/JFHS.2012.27.2.188
  3. Extracts of Chrysanthemum indicum Linne Mediated Regulation of MMP1 via JNK-AP1 Pathway vol.14, pp.4, 2016, https://doi.org/10.20402/ajbc.2016.0070
  4. Development of Optimization Mixture Tea prepared with Roasting Mulberry Leaf and Fruit vol.29, pp.6, 2016, https://doi.org/10.9799/ksfan.2016.29.6.1040
  5. 섬애약쑥 용매별 추출물의 생리활성 vol.29, pp.11, 2019, https://doi.org/10.5352/jls.2019.29.11.1241
  6. Characterization of Composition and Antifungal Properties of Leaf Secondary Metabolites from Thirteen Cultivars of Chrysanthemum morifolium Ramat vol.24, pp.23, 2011, https://doi.org/10.3390/molecules24234202
  7. 섬애약쑥 (Artemisia argyi H.) 추출물의 미백활성 vol.37, pp.2, 2011, https://doi.org/10.12925/jkocs.2020.37.2.241
  8. Diverse Terpenoids and Their Associated Antifungal Properties from Roots of Different Cultivars of Chrysanthemum Morifolium Ramat vol.25, pp.9, 2011, https://doi.org/10.3390/molecules25092083
  9. The knowledge maps using data analytics on the raw material plants, the phytochemical ingredients, and the pharmaceutical efficacy in the tea drinks vol.28, pp.1, 2021, https://doi.org/10.11002/kjfp.2021.28.1.1