DOI QR코드

DOI QR Code

Blocking the Diffusion of Highly Pathogenic Avian Influenza with Analysis of Network Centrality

네트워크 중심성 분석을 통한 고병원성 조류인플루엔자 확산 차단

  • 이형진 (서울대학교 농업생명과학대학 생태조경 지역시스템공학부 대학원) ;
  • 정남수 (공주대학교 산업과학대학 생물산업공학부) ;
  • 문운경 (국립수의과학검역원) ;
  • 이정재 (서울대학교 농업생명과학대학 조경.지역시스템공학부, 서울대학교 농업생명과학연구원)
  • Received : 2010.11.03
  • Accepted : 2010.11.25
  • Published : 2011.01.31

Abstract

Highly pathogenic avian influenza could not be identified visually. It takes time to identify the symptoms by its incubation period. Without taking a quick step, the diffusion area of HPAI has dramatically increased, the extent of damage becomes bigger. In network research, the algorithm of finding the central node on the network applied to various diffusion of epidemic problems, was used in control system of tracing the diffusion path, blocking central nodes. This study tried to make the diffusion of HPAI network model for the crowded farms area, and reduce the diffusion rate to control the high-risk farms.

Keywords

References

  1. Annalisa, C., 1999. Measures of Optimal Centrality: Indicators of City Effect and Urban Overloading. Social Indicators Research 46(3): 273-299. https://doi.org/10.1023/A:1006808506878
  2. Beauchamp, M. A., 1965. An improved index of centrality. Behavioral Science 10(2): 161-163. https://doi.org/10.1002/bs.3830100205
  3. Boccaletti, S., V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, 2006. Complex networks: Structure and dynaics. Physics Reports 424: 175-308. https://doi.org/10.1016/j.physrep.2005.10.009
  4. Dorogovtsev, S. N., A. V. Goltsev, and J. F. F. Mendes, 2008. Critical phenomena in complex networks. Reviews of Modern Physics 80: 1275-1335. https://doi.org/10.1103/RevModPhys.80.1275
  5. Freeman, L. C., 1979. Centrality in social networks conceptual clarification. Social networks 1(3): 215-239. https://doi.org/10.1016/0378-8733(78)90021-7
  6. Kim, Y. H., 2007. Social network analysis. Seoul: Pakyoungsa (in Korean).
  7. Kretzschmar, M., S. van den Hof, and J. Wallinga, 2004. Ring vaccination and smallpox control. Emerging Infectious Diseases 10(5): 832-841. https://doi.org/10.3201/eid1005.030419
  8. Lee, J. H., 2008a. Epidemiology Investigation of Highly pathogenic avian influenza, 32-38: National Veterinary Research Quarantine Service (in Korean).
  9. Lee, M. J., 2008b. Complex systems and networks of social change, 93-99: Korea Information Society Development Institute (in Korean).
  10. Liljeros, F., C. R. Edling, L. A. N. Amaral, and H. E. Stanley, 2001. The web of human sexual contacts. Nature 411: 907-908. https://doi.org/10.1038/35082140
  11. Loomis, C. P., and C. Proctor, 1950. The relationship between choice status and economic status in social systems. Sociometry 13(4): 307-313. https://doi.org/10.2307/2785273
  12. May, R. M. and R. M. Anderson, 1988. The transmission dynamics of human immunodeficiency virus (HIV). Philos. Trans. R. Soc. London B 321: 565-607. https://doi.org/10.1098/rstb.1988.0108
  13. Mika, P., 2004. Social networks and the semantic web. IEEE/WIC/ACM International Conference on Web Intelligence 2004, 285-291. Beijing, China: IEEE/WIC/ AC.
  14. Moreno, Y., J. B. Gómez, and A. F. Pacheco, 2003. Epidemic incidence in correlated complex networks. Phys. Rev. E 68: 035103. https://doi.org/10.1103/PhysRevE.68.035103
  15. Moreno, Y., M. Nekovee, and A. F. Pacheco, 2004. Dynamics of rumor spreading in complex networks. Phys. Rev. E 69: 066130. https://doi.org/10.1103/PhysRevE.69.066130
  16. Müller, J., B. Schonfisch, and M. Kirkilionis, 2000. Ring vaccination, Journal of Mathematical Biology 41(2): 143-171. https://doi.org/10.1007/s002850070003
  17. Newman, M. E. J., 2002. Spread of epidemic disease on networks. Phys. Rev. E 66: 016128. https://doi.org/10.1103/PhysRevE.66.016128
  18. Newman, M. E. J., S. Forrest, and J. Balthrop, 2002. Email networks and the spread of computer viruses. Phys. Rev. E 66: 035101. https://doi.org/10.1103/PhysRevE.66.035101