참고문헌
- Rogenbloom, J., Abrams, W. R. and Mecham R. (1993)Exracellular matrix 4: the elastic fiber. FASEB J. 7, 1208-1218. https://doi.org/10.1096/fasebj.7.13.8405806
- Bashir, M. M., Indik, Z., Yeh, H., Ornstein-Goldstein, N.,Rosenbloom, J. C., Abrams, W., Fazio, M., Uitto, J. andRosenbloom, J. (1989) Characterization of the completehuman elastin gene. Delineation of unusual features inthe 5-flanking region. J. Biol. Chem. 264, 8887-8891.
- Brown-Augsburgert, P., Tisdale, C., Broekelmann, T., Sloan,C. and Mecham, R. P. (1995) Identification of an elastincross-linking domain that joins three peptide chains. J.Biol. Chem. 270, 17778-17783. https://doi.org/10.1074/jbc.270.30.17778
- Clarke, A. W., Arnspang, E. C., Mithieux, S. M., Korkmaz,E., Braet, F. and Weiss, S. A. (2006) Tropoelastin massivelyassociates during coacervation to form quantizedprotein spheres. Biochemistry 45, 9989-9996. https://doi.org/10.1021/bi0610092
- Kielty, C. M., Sherratt, M. J. and Shuttleworth, C. A. (2002)Elastic fibres. J. Cell Sci. 115, 2817-2828.
- Mart, R. J., Osborne, R. D., Stevens, M. M. and Ulijn, R.V. (2006) Peptide-based stimuli-responsive biomaterials.Soft Matter 2, 822-835. https://doi.org/10.1039/b607706d
- Chilkoti, A., Christensen, T. and MacKay, J. A. (2006)Stimulus responsive elastin biopolymers: applications inmedicine and biotechnology. Curr. Opin. Chem. Biol. 10,652-657. https://doi.org/10.1016/j.cbpa.2006.10.010
- Furth, M. E., Atala, A. and Van Dyke, M. E. (2007) Smartbiomaterials design for tissue engineering and regenerativemedicine. Biomaterials 28, 5068-5073. https://doi.org/10.1016/j.biomaterials.2007.07.042
- Urry, D. A. (1997) Physical chemistry of biological freeenergy transduction as demonstrated by elastic proteinbasedpolymers. J. Phys. Chem. B 101, 11007-11028. https://doi.org/10.1021/jp972167t
- Herrero-Vanrell, R., Rincon, A. C., Alonso, M., Reboto,V., Molina-Martinez, I. T. and Rodriguez-Cabello, J. C.(2005) Self-assembled particles of an elastin-like polymeras vehicles for controlled drug release. J. Control. Release102, 113-122. https://doi.org/10.1016/j.jconrel.2004.10.001
- McHale, M. K., Setton, L. A. and Chilkoti, A. (2005) Synthesisand in vitro evaluation of enzymatically cross-linkedelastin-like polypeptide gels for cartilaginous tissue repair.Tissue Eng. 11, 1768-1779. https://doi.org/10.1089/ten.2005.11.1768
- Nicol, A., Gowda, D. C. and Urry, D. W. (1992) Cell adhesionand growth on synthetic elastomeric matrices containingArg-Gly-Asp-Ser-3. J. Biomed. Mater. Res. A 26,393-413. https://doi.org/10.1002/jbm.820260309
- Massodi, I., Bidwell III, G. L. and Raucher, D. (2005)Evaluation of cell penetrating peptides fused to elastin-likepolypeptide for drug delivery. J. Control. Release 108,396-408. https://doi.org/10.1016/j.jconrel.2005.08.007
- Straley, K. and Heilshorn, S. C. (2009) Design and adsorptionof modular engineered proteins to prepare customized,neuron-compatible coatings. Front Neuroengineering2, 1-10.
- Bae, Y., Buresh, R. A., Williamson, T. P., Chen, T. H. andFurgeson, D. Y. (2007) Intelligent biosynthetic nanobiomaterialsfor hyperthermic combination chemotherapyand thermal drug targeting of HSP90 inhibitorgeldanamycin. J. Control. Release 122, 16-23. https://doi.org/10.1016/j.jconrel.2007.06.005
- Chen, T. H., Bae, Y. and Furgeson, D. Y. (2008) Intelligentbiosynthetic nanobiomaterials (IBNs) for hyperthermicgene delivery. Pharm. Res. 25, 683-691. https://doi.org/10.1007/s11095-007-9382-5
- Haider, M., Leung, V., Ferrari, F., Crissman, J., Powell, J.,Cappello, J. and Ghandehari, H. (2005) Molecular engineeringof silk-elastin-like polymers for matrix-mediatedgene delivery: biosynthesis and characterization. Mol. Pharm.2, 139-150. https://doi.org/10.1021/mp049906s
- Meyer, D. E. and Chilkoti, A. (2002) Genetically encodedsynthesis of protein-based polymers with precisely specifiedmolecular weight and sequence by recursive directionalligation: examples from the elastin-like polypeptidesystem. Biomacromolecules 3, 357-367. https://doi.org/10.1021/bm015630n
- McPherson, D. T., Xu, J. and Urry, D. W. (1996) Productpurification by reversible phase transition followingEscherichia coli expression of genes encoding up to 251repeats of the elastomeric pentapeptide GVGVP. ProteinExpr. Purif. 7, 51-57. https://doi.org/10.1006/prep.1996.0008
- Meyer, D. E. and Chilkoti, A. (2004) Quantification of theeffects of chain length and concentration on the thermalbehavior of elastin-like polypeptides. Biomacromolecules5, 846-851. https://doi.org/10.1021/bm034215n
-
Yamaoka, T., Tamura, T., Seto, Y., Tada, T., Kunugi, S. andTirrell, D. A. (2003) Mechanism for the phase transition ofa genetically engineered elastin model peptide
$(VPGIG)_{40}$ in aqueous solution. Biomacromolecules 4, 1680-1685. https://doi.org/10.1021/bm034120l - Cho, Y., Zhang, Y., Christensen, T., Sagle, L. B., Chilkoti,A. and Cremer P. S. (2008) Effects of Hofmeister anionson the phase transition temperature of elastin-like polypeptides.J. Phys. Chem. B 112, 13765-13771. https://doi.org/10.1021/jp8062977
피인용 문헌
- Investigation of Phase Separation Behavior and Formation of Plasmonic Nanocomposites from Polypeptide-Gold Nanorod Nanoassemblies vol.28, pp.16, 2012, https://doi.org/10.1021/la203340y
- Effects of Arg–Gly–Asp-modified elastin-like polypeptide on pseudoislet formation via up-regulation of cell adhesion molecules and extracellular matrix proteins vol.9, pp.3, 2013, https://doi.org/10.1016/j.actbio.2012.10.036
- Spider silk-bone sialoprotein fusion proteins for bone tissue engineering vol.7, pp.10, 2011, https://doi.org/10.1039/c1sm05024a
- Proliferative activity of elastin-like-peptides depends on charge and phase transition vol.104, pp.3, 2016, https://doi.org/10.1002/jbm.a.35609
- Functional enhancement of neuronal cell behaviors and differentiation by elastin-mimetic recombinant protein presenting Arg-Gly-Asp peptides vol.12, pp.1, 2012, https://doi.org/10.1186/1472-6750-12-61