DOI QR코드

DOI QR Code

Contribution of lysine-containing cationic domains to thermally-induced phase transition of elastin-like proteins and their sensitivity to different stimuli

  • Jeon, Won-Bae (Laboratory of Biochemistry and Cellular Engineering, Daegu Gyeongbuk Institute of Science and Technology)
  • 투고 : 2010.08.02
  • 심사 : 2010.09.30
  • 발행 : 2011.01.31

초록

A series of elastin-like proteins, $SKGPG[V(VKG)_3VKVPG]_n$-(ELP1-90)WP (n = 1, 2, 3, and 4), were biosynthesized based on the hydrophobic and lysine linkage domains of tropoelastin. The formation of self-assembled hydrophobic aggregates was monitored in order to determine the influence of cationic segments on phase transition properties as well as the sensitivity to changes in salt and pH. The thermal transition profiles of the proteins fused with only one or two cationic blocks (n = 1 or 2) were similar to that of the counterpart ELP1-90. In contrast, diblock proteins that contain 3 and 4 cationic blocks displayed a triphasic profile and no transition, respectively. Upon increasing the salt concentration and pH, a stimulus-induced phase transition from a soluble conformation to an insoluble aggregate was observed. The effects of cationic segments on the stimuli sensitivity of cationic bimodal ELPs were interpreted in terms of their structural and molecular characteristics.

키워드

참고문헌

  1. Rogenbloom, J., Abrams, W. R. and Mecham R. (1993)Exracellular matrix 4: the elastic fiber. FASEB J. 7, 1208-1218. https://doi.org/10.1096/fasebj.7.13.8405806
  2. Bashir, M. M., Indik, Z., Yeh, H., Ornstein-Goldstein, N.,Rosenbloom, J. C., Abrams, W., Fazio, M., Uitto, J. andRosenbloom, J. (1989) Characterization of the completehuman elastin gene. Delineation of unusual features inthe 5-flanking region. J. Biol. Chem. 264, 8887-8891.
  3. Brown-Augsburgert, P., Tisdale, C., Broekelmann, T., Sloan,C. and Mecham, R. P. (1995) Identification of an elastincross-linking domain that joins three peptide chains. J.Biol. Chem. 270, 17778-17783. https://doi.org/10.1074/jbc.270.30.17778
  4. Clarke, A. W., Arnspang, E. C., Mithieux, S. M., Korkmaz,E., Braet, F. and Weiss, S. A. (2006) Tropoelastin massivelyassociates during coacervation to form quantizedprotein spheres. Biochemistry 45, 9989-9996. https://doi.org/10.1021/bi0610092
  5. Kielty, C. M., Sherratt, M. J. and Shuttleworth, C. A. (2002)Elastic fibres. J. Cell Sci. 115, 2817-2828.
  6. Mart, R. J., Osborne, R. D., Stevens, M. M. and Ulijn, R.V. (2006) Peptide-based stimuli-responsive biomaterials.Soft Matter 2, 822-835. https://doi.org/10.1039/b607706d
  7. Chilkoti, A., Christensen, T. and MacKay, J. A. (2006)Stimulus responsive elastin biopolymers: applications inmedicine and biotechnology. Curr. Opin. Chem. Biol. 10,652-657. https://doi.org/10.1016/j.cbpa.2006.10.010
  8. Furth, M. E., Atala, A. and Van Dyke, M. E. (2007) Smartbiomaterials design for tissue engineering and regenerativemedicine. Biomaterials 28, 5068-5073. https://doi.org/10.1016/j.biomaterials.2007.07.042
  9. Urry, D. A. (1997) Physical chemistry of biological freeenergy transduction as demonstrated by elastic proteinbasedpolymers. J. Phys. Chem. B 101, 11007-11028. https://doi.org/10.1021/jp972167t
  10. Herrero-Vanrell, R., Rincon, A. C., Alonso, M., Reboto,V., Molina-Martinez, I. T. and Rodriguez-Cabello, J. C.(2005) Self-assembled particles of an elastin-like polymeras vehicles for controlled drug release. J. Control. Release102, 113-122. https://doi.org/10.1016/j.jconrel.2004.10.001
  11. McHale, M. K., Setton, L. A. and Chilkoti, A. (2005) Synthesisand in vitro evaluation of enzymatically cross-linkedelastin-like polypeptide gels for cartilaginous tissue repair.Tissue Eng. 11, 1768-1779. https://doi.org/10.1089/ten.2005.11.1768
  12. Nicol, A., Gowda, D. C. and Urry, D. W. (1992) Cell adhesionand growth on synthetic elastomeric matrices containingArg-Gly-Asp-Ser-3. J. Biomed. Mater. Res. A 26,393-413. https://doi.org/10.1002/jbm.820260309
  13. Massodi, I., Bidwell III, G. L. and Raucher, D. (2005)Evaluation of cell penetrating peptides fused to elastin-likepolypeptide for drug delivery. J. Control. Release 108,396-408. https://doi.org/10.1016/j.jconrel.2005.08.007
  14. Straley, K. and Heilshorn, S. C. (2009) Design and adsorptionof modular engineered proteins to prepare customized,neuron-compatible coatings. Front Neuroengineering2, 1-10.
  15. Bae, Y., Buresh, R. A., Williamson, T. P., Chen, T. H. andFurgeson, D. Y. (2007) Intelligent biosynthetic nanobiomaterialsfor hyperthermic combination chemotherapyand thermal drug targeting of HSP90 inhibitorgeldanamycin. J. Control. Release 122, 16-23. https://doi.org/10.1016/j.jconrel.2007.06.005
  16. Chen, T. H., Bae, Y. and Furgeson, D. Y. (2008) Intelligentbiosynthetic nanobiomaterials (IBNs) for hyperthermicgene delivery. Pharm. Res. 25, 683-691. https://doi.org/10.1007/s11095-007-9382-5
  17. Haider, M., Leung, V., Ferrari, F., Crissman, J., Powell, J.,Cappello, J. and Ghandehari, H. (2005) Molecular engineeringof silk-elastin-like polymers for matrix-mediatedgene delivery: biosynthesis and characterization. Mol. Pharm.2, 139-150. https://doi.org/10.1021/mp049906s
  18. Meyer, D. E. and Chilkoti, A. (2002) Genetically encodedsynthesis of protein-based polymers with precisely specifiedmolecular weight and sequence by recursive directionalligation: examples from the elastin-like polypeptidesystem. Biomacromolecules 3, 357-367. https://doi.org/10.1021/bm015630n
  19. McPherson, D. T., Xu, J. and Urry, D. W. (1996) Productpurification by reversible phase transition followingEscherichia coli expression of genes encoding up to 251repeats of the elastomeric pentapeptide GVGVP. ProteinExpr. Purif. 7, 51-57. https://doi.org/10.1006/prep.1996.0008
  20. Meyer, D. E. and Chilkoti, A. (2004) Quantification of theeffects of chain length and concentration on the thermalbehavior of elastin-like polypeptides. Biomacromolecules5, 846-851. https://doi.org/10.1021/bm034215n
  21. Yamaoka, T., Tamura, T., Seto, Y., Tada, T., Kunugi, S. andTirrell, D. A. (2003) Mechanism for the phase transition ofa genetically engineered elastin model peptide $(VPGIG)_{40}$in aqueous solution. Biomacromolecules 4, 1680-1685. https://doi.org/10.1021/bm034120l
  22. Cho, Y., Zhang, Y., Christensen, T., Sagle, L. B., Chilkoti,A. and Cremer P. S. (2008) Effects of Hofmeister anionson the phase transition temperature of elastin-like polypeptides.J. Phys. Chem. B 112, 13765-13771. https://doi.org/10.1021/jp8062977

피인용 문헌

  1. Investigation of Phase Separation Behavior and Formation of Plasmonic Nanocomposites from Polypeptide-Gold Nanorod Nanoassemblies vol.28, pp.16, 2012, https://doi.org/10.1021/la203340y
  2. Effects of Arg–Gly–Asp-modified elastin-like polypeptide on pseudoislet formation via up-regulation of cell adhesion molecules and extracellular matrix proteins vol.9, pp.3, 2013, https://doi.org/10.1016/j.actbio.2012.10.036
  3. Spider silk-bone sialoprotein fusion proteins for bone tissue engineering vol.7, pp.10, 2011, https://doi.org/10.1039/c1sm05024a
  4. Proliferative activity of elastin-like-peptides depends on charge and phase transition vol.104, pp.3, 2016, https://doi.org/10.1002/jbm.a.35609
  5. Functional enhancement of neuronal cell behaviors and differentiation by elastin-mimetic recombinant protein presenting Arg-Gly-Asp peptides vol.12, pp.1, 2012, https://doi.org/10.1186/1472-6750-12-61