배양연골막이 피복된 고효능 인공연골의 생체내 효과

The Effect of Cultured Perichondrial Cell Sheet Covered Highly Active Engineered Cartilage: in vivo Comparative Assessment

  • 박세일 (연세대학교 심혈관제품유효성평가센터) ;
  • 문영미 (오블리제 성형외과 스템텍 코리아) ;
  • 정재호 (오블리제 성형외과 스템텍 코리아) ;
  • 장광호 (경북대학교 수의과대학 수의외과학교실) ;
  • 안면환 (영남대학교 정형외과학교실)
  • Park, Se-Il (Cardiovascular Product Evaluation Center, College of Medicine, Yonsei University) ;
  • Moon, Young-Mi (Oblesse Plastic Surgery & Stemtec Korea) ;
  • Jeong, Jae-Ho (Oblesse Plastic Surgery & Stemtec Korea) ;
  • Jang, Kwang-Ho (Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University) ;
  • Ahn, Myun-Hwan (Department of Orthopedic Surgery, College of Medicine, Yeungnam University)
  • 심사 : 2011.10.21
  • 발행 : 2011.10.31

초록

조직공학적 인공연골재생에 대한 관심이 증가함에 따라 많은 연구들이 활발히 수행되고 있으나 임상적인 적용의 한계를 극복하기위한 고효능을 보유한 양질의 연골조직생산의 필요성이 증가되고 있다. 인공연골은 자연연골과는 달리 '연골막(perichondrium)'을 포함하고 있지 않기 때문에 장기간 생체 내에 삽입된 후에 서서히 흡수 또는 변형으로 임상적 활용에 한계가 있다고 있다. 이에 본 연구는 양질의 연골조직생산을 목적으로, 세포판 제작기법(cell sheet engineering technique) 을 기반으로 한 인체유래의 배양 연골막(cultured perichondrium)을 이용하여 만든 인공연골막 세포판(cultured perichondrial cell sheet)의 생체 내 특성을 비교 분석하고, 배양된 연골막을 피복하여 고효능화를 유도한 인공연골복합체의 생체내 재생효능 및 조직특성을 비교 평가하고자 하였다. 본 연구에서는 Athymic nude mouse의 피하이식모델(study 1, n = 12)을 이용하여 담체로 hydrogel을 이용한 배양연골막 복합체의 생체내 효능을 분석하였고, 중대형동물의 대량연골 결손시의 재생효능을 평가하기 위하여 개의 무릎연골에 $1{\times}2cm$의 대량연골 결손모델(study 2, n = 12)을 통하여 인공배양세포판을 이식하였다. 이식12주 후 이식편을 회수하여 생화학, 분자생물학 및 면역조직학 분석을 시행한 결과, 배양연골막 복합체의 생체내 효능이 단독이식군에 비해 변형이나 과증식 없이 우수한 결과를 나타내었다. 본 연구의 결과로 토대로 배양연골막을 피복한 인공연골막의 관절내 효과를 규명하여 실제 임상적용을 조기화하는 기반을 제공하고 인공연골의 문제점이었던 변형과 흡수를 줄인 고효능 인공연골 제작기법을 제공하는데 유용할 것으로 기대된다.

A special mesenchymal tissue layer called perichondrium has a chondrogenic capacity and is a candidate tissue for engineering of cartilage. To overcome limited potential for chondrocyte proliferation and re-absorption, we studied a method of cartilage tissue engineering comprising chondrocyte-hydrogel pluronic complex (CPC) and cultured perichondrial cell sheet (cPCs) which entirely cover CPC. For effective cartilage regeneration, cell-sheet engineering technique of high-density culture was used for fabrication of cPCs. Hydrogel pluronic as a biomimetic cell carrier used for stable and maintains the chondrocytes. The human cPCs was cultured as a single layer and entirely covered CPC. The tissue engineered constructs were implanted into the dorsal subcutaneous tissue pocket on nude mice (n = 6). CPC without cPCs were used as a controls (N = 6). Engineered cartilage specimens were harvested at 12 weeks after implantation and evaluated with gross morphology and histological examination. Biological analysis was also performed for glycosaminoglycan (GAG) and type II collagen. Indeed, we performed additional in vivo studies of cartilage regeneration using canine large fullthickness chondrial defect model. The dogs were allocated to the experimental groups as treated chondrocyte sheets with perichondrial cell sheet group (n = 4), and chondrocyte sheets only group (n = 4). The histological and biochemical studies performed 12 weeks later as same manners as nude mouse but additional immunofluorescence study. Grossly, the size of cartilage specimen of cPCs covered group was larger than that of the control. On histological examination, the specimen of cPCs covered group showed typical characteristics of cartilage tissue. The contents of GAG and type II collagen were higher in cPCs covered group than that of the control. These studies demonstrated the potential of such CPC/cPCs constructs to support chondrogenesis in vivo. In conclusion, the method of cartilage tissue engineering using cPCs supposed to be an effective method with higher cartilage tissue gain. We suggest a new method of cartilage tissue engineering using cultured perichondrial cell sheet as a promising strategy for cartilage tissue reconstruction.

키워드

참고문헌

  1. Atala A, Cima LG, Kim W, Paige KT, Vacanti JP, Retik AB, Vacanti CA. Injectable alginate seeded with chondrocytes as a potential treatment for vesicoureteral reflux. J Urol 1993: 150: 745-747. https://doi.org/10.1016/S0022-5347(17)35603-3
  2. Breinan HA, Hsu HP, Spector M. Chondral defects in animal models: effects of selected repair procedures in canines. Clin Orthop Relat Res 2001; 391: 219-230. https://doi.org/10.1097/00003086-200110001-00021
  3. Breinan HA, Minas T, Hsu HP, Nehrer S, Sledge CB, Spector M. Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Joint Surg Am 1997; 79: 1439-1451. https://doi.org/10.2106/00004623-199710000-00001
  4. Britt JC, Park SS. Autogenous tissue-engineered cartilage: evaluation as an implant material. Arch Otolaryngol Head Neck Surg 1998; 124: 671-677. https://doi.org/10.1001/archotol.124.6.671
  5. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 33: 889-895.
  6. Brooks PM. Impact of osteoarthritis on individuals and society: how much disability? Social consequences and health economic implications. Curr Opin Rheumatol 2002; 14:573-577. https://doi.org/10.1097/00002281-200209000-00017
  7. Buckwalter JA, Mankin HJ. Articular cartilage repair and transplantation. Arthritis Rheum 1998; 41: 1331-1342. https://doi.org/10.1002/1529-0131(199808)41:8<1331::AID-ART2>3.0.CO;2-J
  8. Burkart AC, Schoettle PB, Imhoff AB. Surgical therapeutic possibilities of cartilage damage. Unfallchirurg 2001; 104: 798-807. https://doi.org/10.1007/s001130170049
  9. Butnariu-Ephrat M, Robinson D, Mendes DG, Halperin N, Nevo Z. Resurfacing of goat articular cartilage by chondrocytes derived from bone marrow. Clin Orthop Relat Res 1996; 330: 234-243. https://doi.org/10.1097/00003086-199609000-00031
  10. Chen FH, Tuan RS. Mesenchymal stem cells in arthritic diseases. Arthritis Res Ther 2008; 10: 223. https://doi.org/10.1186/ar2514
  11. Convery FR, Akeson WH, Keown GH. The repair of large osteochondral defects. An experimental study in horses. Clin Orthop Relat Res 1972; 82: 253-262.
  12. Cook SD, Patron LP, Salkeld SL, Rueger DC. Repair of articular cartilage defects with osteogenic protein-1 (BMP-7) in dogs. J Bone Joint Surg Am 2003; 85: 116-123. https://doi.org/10.2106/00004623-200300003-00018
  13. Dell'Accio F, Vanlauwe J, Bellemans J, Neys J, De Bari C, Luyten FP. Expanded phenotypically stable chondrocytes persist in the repair tissue and contribute to cartilage matrix formation and structural integration in a goat model of autologous chondrocyte implantation. J Orthop Res 2003; 21: 123-131. https://doi.org/10.1016/S0736-0266(02)00090-6
  14. Di Nino DL, Long F, Linsenmayer TF. Regulation of endochondral cartilage growth in the developing avian limb: cooperative involvement of perichondrium and periosteum. Dev Biol 2001; 240: 433-442. https://doi.org/10.1006/dbio.2001.0471
  15. Dorotka R, Windberger U, Macfelda K, Bindreiter U, Toma C, Nehrer S. Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials 2005; 26: 3617-3629. https://doi.org/10.1016/j.biomaterials.2004.09.034
  16. Driesang IM, Hunziker EB. Delamination rates of tissue flaps used in articular cartilage repair. J Orthop Res 2000; 18: 909-911. https://doi.org/10.1002/jor.1100180609
  17. Duynstee ML, Verwoerd-Verhoef HL, Verwoerd CD, Van Osch GL: The dual role of perichondrium in cartilage wound healing. Plast Reconstr Surg 2002; 110: 1073-1079. https://doi.org/10.1097/00006534-200209150-00011
  18. Farmer JM, Martin DF, Boles CA, Curl WW. Chondral and osteochondral injuries. Diagnosis and management. Clin Sports Med 2001; 20:299-320. https://doi.org/10.1016/S0278-5919(05)70308-2
  19. Frisbie DD, Morisset S, Ho CP, Rodkey WG, Steadman JR, McIlwraith CW. Effects of calcified cartilage on healing of chondral defects treated with microfracture in horses. Am J Sports Med 2006; 34: 1824-1831. https://doi.org/10.1177/0363546506289882
  20. Gamer LW, Ho V, Cox K, Rosen V. Expression and function of BMP3 during chick limb development. Dev Dyn 2008; 237: 1691-1698. https://doi.org/10.1002/dvdy.21561
  21. Gilbert JF. Current treatment options for the restoration of articular cartilage. Am J Knee Surg 1998; 11: 42-46.
  22. Godbey WT, Atala A. In vitro systems for tissue engineering. Ann N Y Acad Sci 2002; 961: 10-26. https://doi.org/10.1111/j.1749-6632.2002.tb03041.x
  23. Grande DA, Pitman MI, Peterson L, Menche D, Klein M. The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res 1989; 7: 208-218. https://doi.org/10.1002/jor.1100070208
  24. Hinoi E, Bialek P, Chen YT, Rached MT, Groner Y, Behringer RR, Ornitz DM, Karsenty G. Runx2 inhibits chondrocyte proliferation and hypertrophy through its expression in the perichondrium. Genes Dev 2006; 20: 2937-2942. https://doi.org/10.1101/gad.1482906
  25. Hoemann CD, Hurtig M, Rossomacha E, Sun J, Chevrier A, Shive MS, Buschmann MD. Chitosan-glycerol phosphate/ blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Joint Surg Am 2005; 87: 2671-2686. https://doi.org/10.2106/JBJS.D.02536
  26. Homminga GN, Bulstra SK, Kuijer R, van der Linden AJ. Repair of sheep articular cartilage defects with a rabbit costal perichondrial graft. Acta Orthop Scand 1991; 62: 415-418. https://doi.org/10.3109/17453679108996635
  27. Hunziker EB. Articular cartilage repair. Osteoarthritis Cartilage 2002; 10: 432-463. https://doi.org/10.1053/joca.2002.0801
  28. Hutmacher DW, Kirsch A, Ackermann KL, Hurzeler MB. A tissue engineered cell-occlusive device for hard tissue regeneration- a preliminary report. Int J Periodontics Restorative Dent 2001; 21: 49-59.
  29. Jackson DW, Lalor PA, Aberman HM, Simon TM. Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study. J Bone Joint Surg Am 2001; 83: 53-64. https://doi.org/10.2106/00004623-200101000-00008
  30. Jackson DW, Scheer MJ, Simon TM. Cartilage substitutes. J Am Acad Orthop Surg 2001; 9: 37-52. https://doi.org/10.5435/00124635-200101000-00005
  31. Jeong JH, Moon YM, Kim SO, Yun SS, Shin HI. Human Cartilage Tissue Engineering with Pluronic and Cultured Chondrocyte Sheet. Key Eng Mater 2007; 342: 89-92.
  32. Kuettner KE. Biochemistry of articular cartilage in health and disease. Clin Biochem 1992; 25: 155-163. https://doi.org/10.1016/0009-9120(92)90224-G
  33. Litzke LE, Wagner E, Baumgaertner W, U Hetzel, O Josimovic-Alasevic, J Libera. Repair of extensive articular cartilage defects in horses by autologous chondrocyte transplantation. Ann Biomed Eng 2004; 32: 57-69. https://doi.org/10.1023/B:ABME.0000007791.81433.1a
  34. Long F, Linsenmayer TF. Regulation of growth region cartilage proliferation and differentiation by perichondrium. Development 1998; 125: 1067-1073.
  35. Lu Y, Dhanaraj S, Wang Z, Bradley DM, Bowman SM, Cole BJ, Binette F. Minced cartilage without cell culture serves as an effective intraoperative cell source for cartilage repair. J Orthop Res 2006; 24: 1261-1270. https://doi.org/10.1002/jor.20135
  36. Matsusue Y, Yamamuro T, Hama H. Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy 1993; 9: 318-321. https://doi.org/10.1016/S0749-8063(05)80428-1
  37. Messner K, Gillquist J. Cartilage repair. A critical review. Acta Orthop Scand 1996; 67: 523-529. https://doi.org/10.3109/17453679608996682
  38. Nehrer S, Breinan HA, Ramappa A, Hsu HP, Minas T, Shortkroff S, Sledge CB, Yannas IV, Spector M. Chondrocyteseeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials 1998; 19: 2313-2328. https://doi.org/10.1016/S0142-9612(98)00143-4
  39. Nixon AJ, Brower-Toland BD, Brent D, Bent SJ, Saxer RA, Wilke MJ, Robbins PD, Evans CH. Insulin-like growth factor-I gene therapy applications for cartilage repair. Clin Orthop Relat Res 2000; 379 Suppl: S201-213. https://doi.org/10.1097/00003086-200010001-00026
  40. O'Driscoll SW, Salter RB. The repair of major osteochondral defects in joint surfaces by neochondrogenesis with autogenous osteoperiosteal grafts stimulated by continuous passive motion. An experimental investigation in the rabbit. Clin Orthop Relat Res 1986; 208: 131-140.
  41. Ohlsen L. Cartilage formation from free perichodrial grafts : An experimental study in rabbits Br J Plast Surg 1976; 29: 262-267. https://doi.org/10.1016/S0007-1226(76)90070-9
  42. Ornitz DM. FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev 2005; 16: 205-213. https://doi.org/10.1016/j.cytogfr.2005.02.003
  43. Peppas NA, Langer R. New challenges in biomaterials. Science 1994; 263: 1715-1720. https://doi.org/10.1126/science.8134835
  44. Poole AR, Kojima T, Yasuda T, Mwale T, Kobayashi M, Laverty S. Composition and structure of articular cartilage. Clin Orthop 2001; 391: 26-33. https://doi.org/10.1097/00003086-200110000-00005
  45. Reinholz GG, Lu L, Saris DB, Yaszemski MJ, O'Driscoll SW. Reinholz GG, Lu L, Saris DB, Yaszemski MJ, O'Driscoll SW. Animal models for cartilage reconstruction. Biomaterials 2004; 25: 1511-1521. https://doi.org/10.1016/S0142-9612(03)00498-8
  46. Rotter N, Aigner J, Naumann A, Hammer C, Sittinger M. Behavior of tissue-engineered human cartilage after transplantation into nude mice. J Mater Sci Mater Med 1999; 10: 689-693. https://doi.org/10.1023/A:1008912514271
  47. Rotter N, Haisch A, Buchereler M. Cartilage and bone tissue engineering for reconstructive head and neck surgery. Eur Arch Otorhinolaryngol 2005; 262: 539-545. https://doi.org/10.1007/s00405-004-0866-1
  48. Sellards RA, Nho SJ, Cole BJ. Chondral injuries. Curr Opin Rheumatol 2002; 14: 134-141. https://doi.org/10.1097/00002281-200203000-00010
  49. Sittinger M, Hutmacher DW, Risbud MV. Current strategies for cell delivery in cartilage and bone regeneration. Curr Opin Biotechnol 2004; 15: 411-418. https://doi.org/10.1016/j.copbio.2004.08.010
  50. Solchaga L, Forriol F, Canadell J. Repair of articular cartilage with biological tissues. An experimental study in sheep. Rev Chir Orthop Reparatrice Appar Mot 1996; 82: 101-107.
  51. Vachon AM, McIlwraith CW, Trotter GW, Norrdin RW, Powers BE. Morphologic study of repair of induced osteochondral defects of the distal portion of the radial carpal bone in horses by use of glued periosteal autografts. Am J Vet Res 1991; 52: 317-327.
  52. Van Lange JW, de Roo K, Middelkoop E, van den Bos T, Everts V, Nolst Trenite GJ. Perichondrium wrapped collagenous matrices to induce chondroneogenesis: an in vitro study. Arch Facial Plast Surg 2001; 3: 122-126. https://doi.org/10.1001/archfaci.3.2.122
  53. Van Susante JL, Buma P, Schuman L, Homminga GN, van den Berg WB, Veth RP. Resurfacing potential of heterologous chondrocytes suspended in fibrin glue in large full-thickness defects of femoral articular cartilage: an experimental study in the goat. Biomaterials 1999; 20: 1167-1175. https://doi.org/10.1016/S0142-9612(97)00190-7
  54. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 1996; 273: 613-622. https://doi.org/10.1126/science.273.5275.613
  55. Wakitani S, Goto T, Young RG, Mansour JM, Goldberg VM, Caplan AI. Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng 1998; 4: 429-444. https://doi.org/10.1089/ten.1998.4.429
  56. Wei Wua, Fulin Chenb, Xue Fengc, Yanpu Liua, Tianqiu Mao. Engineering cartilage tissues with the shape of human nasal alar by using chondrocyte macroaggregate- experiment study in rabbit model. J Biotechnol 2007; 130: 75-84. https://doi.org/10.1016/j.jbiotec.2007.02.029
  57. Woodfield TB, Bezemer JM, Pieper JS, van Blitterswijk CA, Riesle J. Scaffolds for tissue engineering of cartilage. Crit Rev Eukaryot Gene Expr 2002; 12: 209-236. https://doi.org/10.1615/CritRevEukaryotGeneExpr.v12.i3.40