Isolation and Characterization of Plant-Derived Lactic Acid Bacteria as Potential Probiotic

잠재적 생균제로서 식물 젖산균의 분리 및 특성

  • Kim, Jeong-Do (College of Natural Resources and Life Science, Pusan National University) ;
  • Park, Sung-Bo (College of Natural Resources and Life Science, Pusan National University) ;
  • Lee, Na-Ri (College of Natural Resources and Life Science, Pusan National University) ;
  • Jeong, Jin-Ha (College of Natural Resources and Life Science, Pusan National University) ;
  • Lee, Hee-Seob (Department of Food Science and Nutrition, Pusan National University) ;
  • Hwang, Dae-Youn (College of Natural Resources and Life Science, Pusan National University) ;
  • Lee, Jong-Sup (Sandong Processing Plant, Nonghyup) ;
  • Jeong, Seong-Yun (Department of Medical Life Science, Catholic University of Daegu) ;
  • Son, Hong-Joo (College of Natural Resources and Life Science, Pusan National University)
  • 김정도 (부산대학교 생명자원과학대학) ;
  • 박성보 (부산대학교 생명자원과학대학) ;
  • 이나리 (부산대학교 생명자원과학대학) ;
  • 정진하 (부산대학교 생명자원과학대학) ;
  • 이희섭 (부산대학교 식품영양학과) ;
  • 황대연 (부산대학교 생명자원과학대학) ;
  • 이종섭 (밀양 산동농협) ;
  • 정성윤 (대구가톨릭대 의생명과학과) ;
  • 손홍주 (부산대학교 생명자원과학대학)
  • Received : 2011.07.26
  • Accepted : 2011.09.04
  • Published : 2011.09.28

Abstract

Plant lactic acid bacteria were isolated from plant-associated fermentative foods and crops, and their probiotic properties were investigated. Isolates K27 and O2 were isolated from Kimchi and onion, and identified as Lactobacillus plantarum on the basis of 16S rRNA gene analysis. The two strains were highly resistant to acid (an MRS broth at pH 2.5), where the survival rates of L. plantarum K27 and L. plantarum O2 were 90.2% and 97.3%, respectively. L. plantarum K27 and L. plantarum O2 also showed high bile resistance to 0.5% oxgall, with a more than 70% survival rate. They showed an inhibitory effect against pathogenic strains of Escherichia coli KCCM 40880 and Pseudomonas aeruginosa ATCC 10145. The antibacterial effect of the two strains was probably due to the presence of lactic acid. ACE inhibitory activities of the two strains ranged from 72.8% to 80.6% in MRS broth. Notably, the two strains showed high ACE inhibitory activity (89.2~98.2%) in MRS broth containing 10% skim milk. Antioxidant activity was tested by DPPH radical scavenging activity, with antioxidant activities of the strains being in the range of 56.8~61.5%. The results obtained in this study suggest that L. plantarum K27 and L. plantarum O2 may be potential probiotic starter cultures with applications with fermentative products.

Keywords

References

  1. Begley, M., C. Hill, and C. G. M. Gahan. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72: 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006
  2. Castro, L. and B. A. Freeman. 2001. Reactive oxygen species: human health and disease. Nutrition 17: 161-165. https://doi.org/10.1016/S0899-9007(00)00570-0
  3. Cho, Y. H., S. N. Park, and S. W. Jeong. 2009. A study on the physiological activity and industrial prospects of plantorigin lactic acid bacteria. Kor. J. Dairy Sci. Technol. 27: 53- 57.
  4. Chung, H. S. and D. W. Chushman. 1971. Spectrometric assay and properties of angiotensin-converting enzyme of rabbit lung. Biochem. Phamacol. 20: 1637-1641. https://doi.org/10.1016/0006-2952(71)90292-9
  5. Chung, W. B., W. S. Soe, J. Y. Cha, and Y. S. Cho. 2003. Isolation and characterization of Lactobacillus sp. FF-3 for probiotics production from Korean dongchimi. Kor. J. Food. Preserv. 10: 406-410.
  6. Cotter, P. D., C. Hill, and R. P. Ross. 2005. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3: 777-788. https://doi.org/10.1038/nrmicro1273
  7. Drancourt, M., C. Bottel, A. Carlioz, R. Martelin, J.P. Gayral, and D. Raoult. 2000. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J. Clin. Microbiol. 38: 3623- 3630.
  8. Fox, G. E., J. D. Wisotzkey, and P. Jurtshuk, Jr. 1992. How close is close: 16S rDNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42: 166-170. https://doi.org/10.1099/00207713-42-1-166
  9. Giraffa, G., N. Chanishvili, and Y. Widyastuti. 2010. Importance of lactobacilli in food and feed biotechnology. Res. Microbiol. 161: 480-487. https://doi.org/10.1016/j.resmic.2010.03.001
  10. Hammes, W. P. and C. Hertel, 2002. Research approaches for pre- and probiotics: challenges and outlook. Food Res. Int. 35: 165-170. https://doi.org/10.1016/S0963-9969(01)00178-8
  11. Hechard, Y., M. Dherbomez, Y. Cenatiempo, and F. Lettllier. 1990. Antagonism of lactic acid bacteria from goats' milk against pathogenic strains assessed by the sandwich method. Lett. Appl. Microbiol. 11: 185-188. https://doi.org/10.1111/j.1472-765X.1990.tb00156.x
  12. Kobayashi, Y., K. Tohyama, and T. Terashima. 1974. Tolerance of the multiple antibiotic resistant strain. Jpn. J. Microbiol. 29: 691-697.
  13. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175, In E. Stackebrandt and M. Goodfellow (eds.), Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York.
  14. Lee, Y. and H. C. Chang. 2008. Isolation and characterization of Kimchi lactic acid bacteria showing anti-Helicobacter pylori activity. Kor. J. Microbiol. Biotechnol. 35: 106- 114.
  15. Lim S. D., K. S. Kim, and J. R. Do. 2008. Physiological characteristics and ACE inhibitory activity of Lactobacillus zeae RMK354 isolated from raw milk. Kor. J. Food. Sci. Ani. Resour. 28: 587-595. https://doi.org/10.5851/kosfa.2008.28.5.587
  16. Lim, S. M. 2010. Resistance to reactive oxygen species and antioxidant activities of some strains of lactic acid bacteria from the mustard leaf Kimchi. Kor. J. Microbiol. 46: 375- 382.
  17. Lim, Y. S., S. Y. Kim, and S. K. Lee. 2008. Characteristics of lactic acid bacteria isolated from Kefir made of goat milk. Kor. J. Food. Sci. Ani. Resour. 28: 82-90. https://doi.org/10.5851/kosfa.2008.28.1.82
  18. Lu, Y. and Y. Foo. 2000. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem. 68: 81-85. https://doi.org/10.1016/S0308-8146(99)00167-3
  19. Messens, W. and L. De Vuyst. 2002. Inhibitory substances produced by lactobacilli isolated from sourdoughs- a review. Int. J. Food Microbiol. 72: 31-43. https://doi.org/10.1016/S0168-1605(01)00611-0
  20. Paik, H. D., M. Y. Jung, H. Y. Jung, W. S. Kim, and K. T. Kim. 2002. Characterization of Bacillus polyfermenticus SCD for oral bacteriotherphy of gastrointestinal disorders. Kor. J. Food Sci. Technol. 34: 73-78.
  21. Philipp, B. 2011. Bacterial degradation of bile salts. Appl. Microbiol. Biotechnol. 89: 903-915. https://doi.org/10.1007/s00253-010-2998-0
  22. Saarela, M., G. Mogensen, R. Fonden, J. Matto, and T. Mattila-Sandholm. 2000. Probiotic bacteria: safety, functional and technological properties. J. Biotechnol. 84: 197- 215. https://doi.org/10.1016/S0168-1656(00)00375-8
  23. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstruction phylogenetic trees. Mol. Biol. Evol. 4: 406-426.
  24. Saliminen, S., M. Laine, A. Wright, J. Vuopio-Varkila, T. Korhonen, and T. Mattila-Sandholm. 1996. Development of selection criteria for probiotic strains to assess their potential functional foods: a nordic and european approach. Biosci. Microflora 15: 61-67.
  25. Sun, T., S. Zhao, H. Wang, C. Cai, Y. Chen, and H. Zhang. 2009. ACE-inhibitory activity and gamma-aminobutyric acid content of fermented skim milk by Lactobacillus helveticus isolated from Xinjiang koumiss in China. Eur. Food Res. Technol. 228: 607-612. https://doi.org/10.1007/s00217-008-0969-9
  26. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882.