The N-terminal Region of the Porcine Epidemic Diarrhea Virus Spike Protein is Important for the Receptor Binding

PED 바이러스 Spike 단백질의 세포 수용체 결합 부위 확인

  • Lee, Dong-Kyu (Department of Microbiology, College of Natural Sciences, Kyungpook National University) ;
  • Cha, Se-Yeoun (Colledge of Veterinary Medicine, Chonbuk National University) ;
  • Lee, Chang-Hee (Department of Microbiology, College of Natural Sciences, Kyungpook National University)
  • 이동규 (경북대학교 자연과학대학 생명과학부 미생물학과) ;
  • 차세연 (전북대학교 수의과대학) ;
  • 이창희 (경북대학교 자연과학대학 생명과학부 미생물학과)
  • Received : 2011.02.15
  • Accepted : 2011.02.17
  • Published : 2011.06.28

Abstract

Porcine epidemic diarrhea virus (PEDV) infection causes acute enteritis with lethal watery diarrhea resulting in a high mortality rate in piglets. As with the other members of group 1 coronaviruses, PEDV also utilizes the host aminopeptidase N (APN) as the major cellular receptor for entry into target cells. The coronavirus spike (S) protein is known to interact with the cellular surface for viral attachment and the S1 domain of all characterized coronaviruses contains a receptor-binding domain (RBD) that mediates a specific high-affinity interaction with their respective cellular receptors. Although the RBDs of several coronaviruses have been mapped, the location of the PEDV RBD has to date not been defined. As a first step toward the identification of the region of the S protein of the PEDV that is critical for recognition with the cellular receptor, we generated a series of S1-truncated variants and examined their abilities to bind to the porcine APN (pAPN) receptor. Our data indicate that the N-terminus of the S1 domain is required for pAPN association. The results from the present study may assist in our understanding of the molecular interactions between the PEDV S protein and the pAPN receptor.

돼지유행성설사 바이러스(porcine epidemic diarrhea virus: PEDV)는 자돈에게 감염 시 수양성설사를 동반한 급성 장염을 유발하며 매우 높은 폐사율을 보이는 그룹 1 코로나바이러스이다. PEDV는 다른 그룹 1 코로나바이러스와 마찬가지로 숙주 세포에 감염 시 aminopeptidase N (APN)을 세포 수용체로 이용한다고 알려져 있다. 코로나바이러스의 spike(S) 단백질은 숙주세포의 표면에 부착과 관련하여 감염 개시에 있어 중요한 역할을 하는 것으로 알려져 있으며 특히 S 단백질의 S1 도메인은 세포 수용체에 특이적인 결합을 매개하는 수용체 결합 도메인(receptor binding domain: RBD)을 포함하고 있는 것으로 알려져 있다. 이미 많은 코로나바이러스의 RBD의 위치가 확인되어져 있지만 PEDV의 RBD에 대해서는 아직까지 알려진 바가 없다. 본 연구에서는 돼지 APN 수용체와 결합을 매개하는 PEDV의 RBD를 규명하기 위해 S1 도메인을 주형으로 하는 일련의 재조합 truncated variant들을 제작하였고 각각의 truncated들이 실제로 pAPN과의 결합을 이루는지에 대하여 실험을 통해 확인하였다. 그 결과 S1 도메인의 N 말단 부분이 pAPN과의 결합에서 중요한 부위임을 확인할 수 있었다. 본 연구에서 도출된 결과는 향후 PEDV의 S 단백질과 pAPN간의 분자적 상호작용을 이해하는 데에 도움을 줄 것으로 판단된다.

Keywords

References

  1. Bonavia, A., B. D. Zelus, D. E. Wentworth, P. J. Talbot, and K. V. Holmes. 2002. Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E. J. Virol. 77: 530-538.
  2. Bosch, B. J., R. Van Der Zee, C. A. De Haan, and P. J. Rottier. 2003. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 77: 8801-8811. https://doi.org/10.1128/JVI.77.16.8801-8811.2003
  3. Delmas, B., J. Gelfi, R. L'Haridon, L. K. Vogel, H. Sjostrom, O. Noren, and H. Laude. 1992. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357: 417-420. https://doi.org/10.1038/357417a0
  4. Farzan M., T. Mirzabekov, P. Kolchinsky, R. Wyatt, M. Cayabyab, N. P. Gerard, C. Gerard, J. Sodroski, and H. Choe. 1999. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96: 667-676. https://doi.org/10.1016/S0092-8674(00)80577-2
  5. Gallagher, T. M. and M. J. Buchmeier. 2001. Coronavirus spike proteins in viral entry and pathogenesis. Virology 279: 371-374. https://doi.org/10.1006/viro.2000.0757
  6. Godet, M., J. Grosclaude, B. Delmas, and H. Laude. 1994. Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J. Virol. 68: 8008- 8016.
  7. Kolb, A. F., A. Hegyi, J. Maile, A. Heister, M. Hagemann, and S. G. Siddell. 1998. Molecular analysis of the coronavirus- receptor function of aminopeptidase N. Adv. Exp. Med. Biol. 440: 61-67.
  8. Kubo, H., Y. K. Yamada, and F. Taguchi. 1994. Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J. Virol. 68: 403-410.
  9. Lai, C. C., M. J. Jou, S. Y. Huang, S. W. Li, L. Wan, F. J. Tsai, and C. W. Lin. 2007. Proteomic analysis of up-regulated proteins in human promonocyte cells expressing severe acute respiratory syndrome coronavirus 3C-like protease. Proteomics 7: 1446-1460 https://doi.org/10.1002/pmic.200600459
  10. Laude, H., M. Godet, S. Bernard, J. Gelfi, M. Duarte, and B. Delmas. 1995. Functional domains in the spike protein of transmissible gastroenteritis virus. Adv. Exp. Med. Biol. 380: 299-304.
  11. Lee, C., J. G. Calvert, S. K. Welch, and D. Yoo. 2005. A DNA-launched reverse genetics system for porcine reproductive and respiratory syndrome virus reveals that homodimerization of the nucleocapsid protein is essential for virus infectivity. Virology 331: 47-62. https://doi.org/10.1016/j.virol.2004.10.026
  12. Lee, D. K., C. K. Park, S. H. Kim, and C. Lee. 2010. Heterogeneity in spike protein genes of porcine epidemic diarrhea viruses isolated in Korea. Virus Res. 149: 175-182. https://doi.org/10.1016/j.virusres.2010.01.015
  13. Lee, Y. J., C. K. Park, E. Nam, S. H. Kim, O. S. Lee, D. S. Lee, and C. Lee. 2010. Generation of a porcine alveolar macrophage cell line for the growth of porcine reproductive and respiratory syndrome virus. J. Virol. Methods 163: 410-415. https://doi.org/10.1016/j.jviromet.2009.11.003
  14. Li, B. X., J. W. Ge, and Y. J. Li. 2007. Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus. Virology 365: 166-172. https://doi.org/10.1016/j.virol.2007.03.031
  15. Li, W., M. J. Moore, N. Vasilieva, J. Sui, S. K. Wong, M. A. Berne, M. Somasundaran, J. L. Sullivan, K. Luzuriaga, T. C. Greenough, H. Choe, and M. Farzan. 2003. Angiotensinconverting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426: 450-454. https://doi.org/10.1038/nature02145
  16. Lin, H. X., Y. Feng, G. Wong, L. Wang, B. Li, X. Zhao, Y. Li, F. Smaill, and C. Zhang. 2007. Identification of residues in the receptor-binding domain (RBD) of the spike protein of human coronavirus NL63 that are critical for the RBD-ACE2 receptor interaction. J. Gen. Virol. 89: 1015-1024.
  17. Nam, E. and C. Lee. 2010. Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection. Vet. Microbiol. 144: 41-50. https://doi.org/10.1016/j.vetmic.2009.12.024
  18. Pensaert, M. B. and S. G. Yeo. 2006. Porcine epidemic diarrhea, pp. 367-372. In B. E. Straw, J. J. Zimmerman, S. D'Allaire, and D. J. Taylor (ed.), Diseases of Swine, 9th ed. Wiley-Blackwell, Ames.1.
  19. Tresnan D. B., R. Levis, and K. V. Holmes. 1996. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J. Virol. 70: 669-674.
  20. Wong S. K., W. Li, M. J. Moore, H. Choe, and M. Farzan. 2004. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem. 279: 3197-3201.
  21. 21. Yeager, C. L., R. A. Ashmun, R. K. Williams, C. B. Cardellichio, L. H. Shapiro, A. T. Look, and K. V. Holmes. 1992. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357: 420-422. https://doi.org/10.1038/357420a0