제주 연안의 해수로부터 분리한 Cellulase 생산균 Bacillus sp. GC-1과 GC-4의 동정

Identification of a Cellulase Producing Marine Bacillus sp. GC-1 and GC-4 Isolated from Coastal Seawater of Jeju Island

  • 지원재 (명지대학교 생명과학정보학부) ;
  • 박다연 (명지대학교 생명과학정보학부) ;
  • ;
  • 이종열 (농촌진흥청 국립농업과학원) ;
  • 장용근 (한국과학기술원 생명화학공학과) ;
  • 홍순광 (명지대학교 생명과학정보학부)
  • Chi, Won-Jae (Department of Biological Science, Myongji University) ;
  • Park, Da-Yeon (Department of Biological Science, Myongji University) ;
  • Temuujin, Uyangaa (Department of Biological Science, Myongji University) ;
  • Lee, Jong-Yeol (National Academy of Agricultural Science, Rural Development Administration) ;
  • Chang, Yong-Keun (Dept. of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Hong, Soon-Kwang (Department of Biological Science, Myongji University)
  • 투고 : 2011.02.01
  • 심사 : 2011.03.28
  • 발행 : 2011.06.28

초록

GC-1과 GC-4로 명명된 두 종의 그람 양성 박테리아가 제주도 연안해수로부터 동정되었다. 이 두 균주는 16S rRNA 유전자 염기서열 분석과 생리적 특성 분석결과를 토대로 Bacillus 속의 박테리아로 규명되었다. 균주 GC-1의 16S rRNA 유전자 염기서열은 B. tequiliensis와 B. subtilis subsp. inaquosorum의 16S rRNA 유전자 염기서열과 99.91%의 상동성을 보였고, 균주 GC-4의 16S rRNA 유전자 염기서열은 B. altitudinis, B. stratosphericus 및 B. aerophilus의 16S rRNA 유전자 염기서열과 100%의 상동성을 보였다. 그러나 두 균주의 생리학적-유전학적 특성 분석 결과, 이들이 계통적 유연관계를 갖는 다른 Bacillus 속의 균주들과 상당한 차이가 있었고, 따라서 조사된 Bacillus 속과는 다른 속에 속할 가능성이 높았다. 이러한 결과는 Bacillus 속이 진화과정 중에 다양한 변종으로 진화되었음을 암시한다.

Two Gram positive bacterial strains, designated strain GC-1 and GC-4, were isolated from coastal seawater near Jeju Island in the Republic of Korea. The two strains were identified as members of the genus Bacillus, based on 16S rRNA gene sequencing and data for physiological characteristics analyses. A subtle difference in physiological and genotypical characteristics has led us to designate the strains GC-1 and GC-4. The strain GC-1 showed a 99.91% similarity in 16S rRNA gene sequencing with B. tequiliensis and B. subtilis subsp. inaquosorum and the strain GC-4 showed a 100% similarity in 16S rRNA gene sequencing with those of B. altitudinis, B. stratosphericus, and B. aerophilus. However, both strains exhibited different physiological and genotypical characteristics in many aspects from those of their phylogenetically closest neighbors listed above, which implies that genus Bacillus has diversified into various species during its evolutionary process.

키워드

참고문헌

  1. Chun, J. S., J. H. Lee, Y. Y. Jung, M. J. Kim, S. I. Kim, B. K. Kim, and Y. W. Lim. 2007. Eztaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259- 2261. https://doi.org/10.1099/ijs.0.64915-0
  2. Devi, S. H., K. Vijayalakshmi, K. P. Jyotsna, S. K. Shaheen, K. Jyothi, and M. S. Rani. 2009. Comparative assessment in enzyme activities and microbial populatins during normal and vermicomposing. J. Envrion. Biol. 30: 1013-1017.
  3. Felsenstein, J. 1993. PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seatle, USA
  4. Gardner, R. M., K. C. Doerner, and B. A. White. 1987. Purification and characterization of an exo-beta-1, 4-glucanase from Ruminococcus flavefaciens FD-1. J. Bacteriol. 169: 4581-4588.
  5. Gatson, J. W., B. F. Benz, C. Chandrasekara, M. Satomi, K. Venkateswara, and M. E. Hart. 2006. Bacillus tequilensis sp. nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis. Int. J. Syst. Bacteriol. 56: 1475-1484.
  6. Gilkes, N. R., M. L. Langsford, D. G. Kilburn, R. C. Miller, and R. A. Warren. 1984. Mode of action and substrate specificities of cellulases from cloned bacterial genes. J. Biol. Chem. 259: 10455-10459.
  7. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic. Acids Symp. Ser. 41: 95-98.
  8. Jager, G., H. Wulfhorst, E. U. Zeithammel, E. Elinidou, A. C. Spiess, and J. Buchs. 2011. Screening of cellulases for biofuel production: Online monitoring of the enzymatic hydrolysis of insoluble cellulose using high-throughput scattered light detection. Biotechnol. J. 6: 74-85. https://doi.org/10.1002/biot.201000387
  9. Kim, B.-K., B.-H. Lee, Y.-J. Lee, I.-H. Jin, C.-H. Chung, and J.-W. Lee. 2009. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb. Technol. 44: 411-416. https://doi.org/10.1016/j.enzmictec.2009.02.005
  10. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK.
  11. Kluge, A. G and F. S. Farris. 1969. Quantative phyletics and the evolution of anurans. Syst. Zool. 18: 1-32. https://doi.org/10.2307/2412407
  12. Nakamura, L. K., M. S. Roberts, and F. M. Cohan. 1999. Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. Int. J. Syst. Bacteriol. 49: 1211-1215 https://doi.org/10.1099/00207713-49-3-1211
  13. Patrick, J. A., P. J. Meeuwsen, J. P. Vincken, G. Beldman, and A. G. Voragen. 2000. A universal assay for screening expression libraries for carbohydrases. J. Biosci. Bioeng. 89: 107-109. https://doi.org/10.1016/S1389-1723(00)88062-7
  14. Robson, L. M., and G. H. Chambliss. 1987. Endo-beta-1, 4- glucanase gene of Bacillus subtilis DLG. J. Bacteriol. 169: 2017-2025.
  15. Rooney, A. P., N. P. Price, C. Ehrhardt, J. L. Swezey, and J. D. Bannan. 2009. Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int. J. Syst. Evol. Microbiol. 59: 2429-2436 https://doi.org/10.1099/ijs.0.009126-0
  16. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  17. Satomi, M., M. T. Laduc, and K. Venkateswaran. 2006. Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. Int. J. Syst. Evol. Micbiolol. 56: 1735-1740. https://doi.org/10.1099/ijs.0.64189-0
  18. Shivaji, S., P. Chaturvedi, K. Suresh, G. S. Reddy, C. B. Dutt, M. Wainwright, J. V. Narlikar, and P. M. Bhargava. 2006. Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. Int. J. Syst. Evol. Microbiol. 56: 1465-1473. https://doi.org/10.1099/ijs.0.64029-0
  19. Srivatsan, A., Y. Han, J. Peng, A. K. Tehranchi, R. Gibbs, J. D. Wang, and R. Chen. 2008. High-precision, wholegenome sequencing of laboratory strains facilitates genetic studies. PLoS Genet. 4: E1000139 https://doi.org/10.1371/journal.pgen.1000139
  20. Thomson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673