Inhibition of Quorum Sensing and Biofilm Formation by Synthetic Quorum Signal Analogues in Pseudomonas aeruginosa

합성된 쿼럼 신호 유사 물질에 의한 녹농균 쿼럼 센싱 및 생물막 형성의 제어

  • Kim, Soo-Kyoung (Department of Pharmacy, College of Pharmacy, Pusan National University) ;
  • Kim, Cheol-Jin (Departments of Chemistry, Princeton University) ;
  • Yoon, Je-Yong (Biological Engineering, College of Engineering, Seoul National University) ;
  • Lee, Joon-Hee (Department of Pharmacy, College of Pharmacy, Pusan National University)
  • 김수경 (부산대학교 약학대학 미생물학 연구실) ;
  • 김철진 ;
  • 윤제용 (서울대학교 화학생물공학부) ;
  • 이준희 (부산대학교 약학대학 미생물학 연구실)
  • Received : 2010.12.22
  • Accepted : 2011.01.24
  • Published : 2011.03.28

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen that causes various infections on urinary track, cornea, respiratory track, and burn wound site, and mainly relies on quorum sensing (QS) for its virulence. To control the infectivity of P. aeruginosa, we previously synthesized the structural analogues of a major QS signal, N-3-oxododecanoyl homoserine lactone (3OC12-HSL) to use as a QS inhibitor. Two of them (5b and 5f) had been confirmed to have an inhibitory effect on LasR, a major QS signal receptor of P. aeruginosa in the screening by the recombinant Escherichia coli reporter. To further evaluate these compounds, we tested their efficacy to control the QS and virulence of P. aeruginosa. Unlike the result from E. coli reporter, both 5b and 5f failed to affect the LasR activity in P. aeruginosa, but instead they selectively affected the activity of QscR, another 3OC12-HSL receptor of P. aeruginosa. Interestingly, their effect on QscR was complex and opposite to what we obtained with E. coli system. Both 5b and 5f enhanced the QscR activity at the low concentration range (< 10 ${\mu}m$), but high concentration of 5f (${\approx}$1 mM) strongly inhibited QscR. While 5b and 5f didn't affect the production of proteases, the key virulence factor, they significantly reduced the biofilm formation that is important in mediating chronic infections. Especially, 5f inhibited the initial attachment of P. aeruginosa, rather than the biofilm maturation. Based on our results, we suggest that 5f can be applied for an anti-biofilm agent without increasing virulence of P. aeruginosa.

그람음성 간균인 녹농균(Pseudomonas aeruginosa)은 비뇨기, 각막, 호흡기, 화상부위 등에 광범위하게 감염하는 기회감염성 병원균으로, 병원성의 발현에 세균의 세포밀도 인식 기전인 쿼럼 센싱(quorum sensing)이 매우 중요하게 관여한다. 사전 연구에서 녹농균 감염력을 제어하기 위한 방법으로 쿼럼 센싱의 주 신호물질인 N-3-oxododecanoyl-HSL(3OC12-HSL)의 분자 구조가 변형된 물질들을 합성하여 쿼럼 센싱 억제물질로 사용하고자 하였으며, 그 중 두 개의 물질들(5b, 5f)이 대장균을 이용한 스크리닝을 통해 녹농균의 주요 쿼럼 센싱 수용체 단백질인 LasR의 활성을 억제할 수 있음을 확인하였었다. 본 연구에서는 이 물질들의 효과를 보다 면밀히 분석하기 위하여 실제 녹농균에서 이 물질들이 쿼럼 센싱과 병독성을 억제할 수 있는지 분석해 보았다. 대장균을 이용한 리포터 분석에서와는 달리, 5b와 5f 모두 녹농균에서 직접 처리하였을 때는 LasR의 활성에 영향을 주지 못하였다. 대신 이 물질들은 녹농균의 또다른 쿼럼 센싱 수용체 단백질인 QscR의 활성에 선택적으로 영향을 주었다. 흥미롭게도 이 물질들의 효과는 대장균에서 얻어진 결과와는 달랐으며 다소 복잡하였다. 두 물질 모두 낮은 농도 범위(<10 ${\mu}m$)에서 QscR의 활성을 증가시켰으며, 높은 농도의 5f(${\approx}$1 mM)는 QscR을 강하게 억제하였다. 두 물질 모두 중요한 병독인자인 프로테아제 활성에는 영향을 주지 않으면서도, 만성감염을 매개하는데 중요한 생물막의 형성은 의미있게 감소시켰다. 특히 5f는 생물막의 성숙단계 보다는 녹농균 세포의 초기 부착을 억제하였다. 이러한 결과들을 바탕으로, 5f의 경우 독성의 증가 없이 생물막 형성을 억제할 수 있는 물질로 응용이 가능하다고 제안한다.

Keywords

References

  1. Abdel-Mawgoud, A. M., F. Lepine, and E. Deziel. 2010. Rhamnolipids: Diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol. 86: 1323-1336. https://doi.org/10.1007/s00253-010-2498-2
  2. Alionte, L. G., B. M. Cannon, C. D. White, A. R. Caballero, R. J. O'Callaghan, and J. A. Hobden. 2001. Pseudomonas aeruginosa lasa protease and corneal infections. Curr Eye Res. 22: 266-271. https://doi.org/10.1076/ceyr.22.4.266.5509
  3. Balaban, N., A. Giacometti, O. Cirioni, Y. Gov, R. Ghiselli, F. Mocchegiani, C. Viticchi, M. S. Del Prete, V. Saba, G. Scalise, and G. Dell'Acqua. 2003. Use of the quorumsensing inhibitor rnaiii-inhibiting peptide to prevent biofilm formation in vivo by drug-resistant staphylococcus epidermidis. J Infect Dis. 187: 625-630. https://doi.org/10.1086/345879
  4. Baveja, J. K., G. Li, R. E. Nordon, E. B. Hume, N. Kumar, M. D. Willcox, and L. A. Poole-Warren. 2004. Biological performance of a novel synthetic furanone-based antimicrobial. Biomaterials. 25: 5013-5021. https://doi.org/10.1016/j.biomaterials.2004.02.007
  5. Blackwood, L. L., R. M. Stone, B. H. Iglewski, and J. E. Pennington. 1983. Evaluation of pseudomonas aeruginosa exotoxin a and elastase as virulence factors in acute lung infection. Infect Immun. 39: 198-201.
  6. Bruno, T. F., D. E. Woods, and C. H. Mody. 2000. Exoenzyme s from pseudomonas aeruginosa induces apoptosis in t lymphocytes. J Leukoc Biol. 67: 808-816. https://doi.org/10.1002/jlb.67.6.808
  7. Chugani, S. A., M. Whiteley, K. M. Lee, D. D'Argenio, C. Manoil, and E. P. Greenberg. 2001. Qscr, a modulator of quorum-sensing signal synthesis and virulence in pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 98: 2752-2757. https://doi.org/10.1073/pnas.051624298
  8. Cos, P., K. Tote, T. Horemans, and L. Maes. 2010. Biofilms: An extra hurdle for effective antimicrobial therapy. Curr Pharm Des. 16: 2279-2295. https://doi.org/10.2174/138161210791792868
  9. Davies, D. G., M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton, and E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 280: 295-298. https://doi.org/10.1126/science.280.5361.295
  10. Dietrich, L. E., A. Price-Whelan, A. Petersen, M. Whiteley, and D. K. Newman. 2006. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of pseudomonas aeruginosa. Mol Microbiol. 61: 1308-1321. https://doi.org/10.1111/j.1365-2958.2006.05306.x
  11. Diggle, S. P., P. Cornelis, P. Williams, and M. Camara. 2006. 4-quinolone signalling in pseudomonas aeruginosa: Old molecules, new perspectives. Int J Med Microbiol. 296: 83- 91. https://doi.org/10.1016/j.ijmm.2006.01.038
  12. Dong, Y. H. and L. H. Zhang. 2005. Quorum sensing and quorum-quenching enzymes. J Microbiol. 43 Spec No, 101- 109.
  13. Francolini, I. and G. Donelli. 2010. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol. 59: 227-238. https://doi.org/10.1111/j.1574-695X.2010.00665.x
  14. Hentzer, M., H. Wu, J. B. Andersen, K. Riedel, T. B. Rasmussen, N. Bagge, N. Kumar, M. A. Schembri, Z. Song, P. Kristoffersen, M. Manefield, J. W. Costerton, S. Molin, L. Eberl, P. Steinberg, S. Kjelleberg, N. Hoiby, and M. Givskov. 2003. Attenuation of pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22: 3803-3815. https://doi.org/10.1093/emboj/cdg366
  15. Heydorn, A., B. Ersboll, J. Kato, M. Hentzer, M. R. Parsek, T. Tolker-Nielsen, M. Givskov, and S. Molin. 2002. Statistical analysis of pseudomonas aeruginosa biofilm development: Impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol. 68: 2008-2017. https://doi.org/10.1128/AEM.68.4.2008-2017.2002
  16. Johnson, M. K. and D. Boese-Marrazzo. 1980. Production and properties of heat-stable extracellular hemolysin from pseudomonas aeruginosa. Infect Immun. 29: 1028-1033.
  17. Kim, C., J. Kim, H. Y. Park, J. H. Lee, H. J. Park, C. K. Kim, and J. Yoon. 2009. Structural understanding of quorum-sensing inhibitors by molecular modeling study in pseudomonas aeruginosa. Appl Microbiol Biotechnol. 83: 1095-1103. https://doi.org/10.1007/s00253-009-1954-3
  18. Kim, C., J. Kim, H. Y. Park, R. J. McLean, C. K. Kim, J. Jeon, S. S. Yi, Y. G. Kim, Y. S. Lee, and J. Yoon. 2007. Molecular modeling, synthesis, and screening of new bacterial quorumsensing antagonists. J Microbiol Biotechnol. 17: 1598-1606.
  19. Kim, C., J. Kim, H. Y. Park, H. J. Park, C. K. Kim, J. Yoon, and J. H. Lee. 2009. Development of inhibitors against trar quorum-sensing system in agrobacterium tumefaciens by molecular modeling of the ligand-receptor interaction. Mol Cells. 28: 447-453. https://doi.org/10.1007/s10059-009-0144-6
  20. Kim, C., J. Kim, H. Y. Park, H. J. Park, J. H. Lee, C. K. Kim, and J. Yoon. 2008. Furanone derivatives as quorumsensing antagonists of pseudomonas aeruginosa. Appl Microbiol Biotechnol. 80: 37-47. https://doi.org/10.1007/s00253-008-1474-6
  21. Lee, J. H., Y. Lequette, and E. P. Greenberg. 2006. Activity of purified qscr, a pseudomonas aeruginosa orphan quorumsensing transcription factor. Mol Microbiol. 59: 602-609. https://doi.org/10.1111/j.1365-2958.2005.04960.x
  22. Lequette, Y., J. H. Lee, F. Ledgham, A. Lazdunski, and E. P. Greenberg. 2006. A distinct qscr regulon in the pseudomonas aeruginosa quorum-sensing circuit. J Bacteriol. 188: 3365- 3370. https://doi.org/10.1128/JB.188.9.3365-3370.2006
  23. Manefield, M., T. B. Rasmussen, M. Henzter, J. B. Andersen, P. Steinberg, S. Kjelleberg, and M. Givskov. 2002. Halogenated furanones inhibit quorum sensing through accelerated luxr turnover. Microbiology. 148: 1119-1127. https://doi.org/10.1099/00221287-148-4-1119
  24. Matsumoto, K. 2004. Role of bacterial proteases in pseudomonal and serratial keratitis. Biol Chem. 385: 1007- 1016.
  25. Page, M. G. and J. Heim. 2009. Prospects for the next antipseudomonas drug. Curr Opin Pharmacol. 9: 558-565. https://doi.org/10.1016/j.coph.2009.08.006
  26. Park, S. J., H. Y. Chung, and J. H. Lee. Rapid in vivo screening system for anti-oxidant activity using bacterial redox sensor strains. J Appl Microbiol. 108: 1217-1225.
  27. Parsek, M. R. and E. P. Greenberg. 2005. Sociomicrobiology: The connections between quorum sensing and biofilms. Trends Microbiol. 13: 27-33. https://doi.org/10.1016/j.tim.2004.11.007
  28. Pesavento, C. and R. Hengge. 2009. Bacterial nucleotidebased second messengers. Curr Opin Microbiol. 12: 170- 176. https://doi.org/10.1016/j.mib.2009.01.007
  29. Purevdorj, B., J. W. Costerton, and P. Stoodley. 2002. Influence of hydrodynamics and cell signaling on the structure and behavior of pseudomonas aeruginosa biofilms. Appl Environ Microbiol. 68: 4457-4464. https://doi.org/10.1128/AEM.68.9.4457-4464.2002
  30. Reading, N. C. and V. Sperandio. 2006. Quorum sensing: The many languages of bacteria. FEMS Microbiol Lett. 254: 1-11. https://doi.org/10.1111/j.1574-6968.2005.00001.x
  31. Schuster, M. and E. P. Greenberg. 2006. A network of networks: Quorum-sensing gene regulation in pseudomonas aeruginosa. Int J Med Microbiol. 296: 73-81. https://doi.org/10.1016/j.ijmm.2006.01.036
  32. Schuster, M., M. L. Urbanowski, and E. P. Greenberg. 2004. Promoter specificity in pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified lasr. Proc Natl Acad Sci U S A. 101: 15833-15839. https://doi.org/10.1073/pnas.0407229101
  33. Smith, K. M., Y. Bu, and H. Suga. 2003. Library screening for synthetic agonists and antagonists of a pseudomonas aeruginosa autoinducer. Chem Biol. 10: 563-571. https://doi.org/10.1016/S1074-5521(03)00107-8
  34. Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K. Wong, Z. Wu, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. Hancock, S. Lory, and M. V. Olson. 2000. Complete genome sequence of pseudomonas aeruginosa pao1, an opportunistic pathogen. Nature. 406: 959-964. https://doi.org/10.1038/35023079
  35. Suman, E., S. Varghese, and J. Jose. 2005. Gentamicin resistance in biofilm producing pseudomonas aeruginosa causing catheter associated urinary tract infections. Indian J Med Sci. 59: 214-216. https://doi.org/10.4103/0019-5359.16260
  36. Tang, A., M. E. Marquart, J. D. Fratkin, C. C. McCormick, A. R. Caballero, H. P. Gatlin, and R. J. O'Callaghan. 2009. Properties of pasp: A pseudomonas protease capable of mediating corneal erosions. Invest Ophthalmol Vis Sci. 50: 3794-3801. https://doi.org/10.1167/iovs.08-3107
  37. Welch, M., H. Mikkelsen, J. E. Swatton, D. Smith, G. L. Thomas, F. G. Glansdorp, and D. R. Spring. 2005. Cell-cell communication in gram-negative bacteria. Mol Biosyst. 1: 196-202. https://doi.org/10.1039/b505796p
  38. Williams, P. 2007. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology. 153: 3923-3938. https://doi.org/10.1099/mic.0.2007/012856-0
  39. Ymele-Leki, P. and J. M. Ross. 2007. Erosion from staphylococcus aureus biofilms grown under physiologically relevant fluid shear forces yields bacterial cells with reduced avidity to collagen. Appl Environ Microbiol. 73: 1834-1841. https://doi.org/10.1128/AEM.01319-06