DOI QR코드

DOI QR Code

Gene Identification and Molecular Characterization of Solvent Stable Protease from A Moderately Haloalkaliphilic Bacterium, Geomicrobium sp. EMB2

  • Karan, Ram (Department of Chemistry, Indian Institute of Technology Delhi) ;
  • Singh, Raj Kumar Mohan (Department of Plant Molecular Biology, University of Delhi South Campus) ;
  • Kapoor, Sanjay (Department of Plant Molecular Biology, University of Delhi South Campus) ;
  • Khare, S.K. (Department of Chemistry, Indian Institute of Technology Delhi)
  • Received : 2010.07.30
  • Accepted : 2010.11.11
  • Published : 2011.02.28

Abstract

Cloning and characterization of the gene encoding a solvent-tolerant protease from the haloalkaliphilic bacterium Geomicrobium sp. EMB2 are described. Primers designed based on the N-terminal amino acid sequence of the purified EMB2 protease helped in the amplification of a 1,505-bp open reading frame that had a coding potential of a 42.7-kDa polypeptide. The deduced EMB2 protein contained a 35.4-kDa mature protein of 311 residues, with a high proportion of acidic amino acid residues. Phylogenetic analysis placed the EMB2 gene close to a known serine protease from Bacillus clausii KSM-K16. Primary sequence analysis indicated a hydrophobic inclination of the protein; and the 3D structure modeling elucidated a relatively higher percentage of small (glycine, alanine, and valine) and borderline (serine and threonine) hydrophobic residues on its surface. The structure analysis also highlighted enrichment of acidic residues at the cost of basic residues. The study indicated that solvent and salt stabilities in Geomicrobium sp. protease may be accorded to different structural features; that is, the presence of a number of small hydrophobic amino acid residues on the surface and a higher content of acidic amino acid residues, respectively.

Keywords

References

  1. Birnboim, H. C. and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523. https://doi.org/10.1093/nar/7.6.1513
  2. Danson, M. J. and D. W. Hough. 1997. The structural basis of protein halophilicity. Comp. Biochem. Physiol. 117A: 307-312.
  3. De Castro, R. E., D. M. Ruiz, M. I. Gimenez, R. A. Paggi, M. X. Silveyra, and J. A. Maupin-Furlow. 2008. Gene cloning and heterologous synthesis of a haloalkaliphilic extracellular protease of Natrialba magadii (Nep). Extremophiles 12: 677-687. https://doi.org/10.1007/s00792-008-0174-6
  4. Dodia, M. S., C. M Rawal, H. G. Bhimani, R. H. Joshi, S. K. Khare, and S. P. Singh. 2008. Purification and stability characteristics of an alkaline serine protease from a newly isolated haloalkaliphilic bacterium sp. AH-6. J. Ind. Microbiol. Biotechnol. 35: 121-131. https://doi.org/10.1007/s10295-007-0273-x
  5. Gimenez, M. I., C. A. Studdert, J. J. Sanchez, and R. E. De Castro. 2000. Extracellular protease of Natrialba magadii: Purification and biochemical characterization. Extremophiles 4: 181-188. https://doi.org/10.1007/s007920070033
  6. Gupta, A., S. Ray, S. Kapoor, and S. K. Khare. 2008. Solventstable Pseudomonas aeruginosa PseA protease gene: Identification, molecular characterization, phylogenetic and bioinformatic analysis to study reasons for solvent stability. J. Mol. Biol. Biotechnol. 15: 234-243.
  7. Gupta, A., I. Roy, R. K. Patel, S. P. Singh, S. K. Khare, and M. N. Gupta. 2005. One-step purification and characterization of an alkaline protease from haloalkaliphilic Bacillus sp. J. Chromatogr. A 1075: 103-108. https://doi.org/10.1016/j.chroma.2005.03.127
  8. Hiraga, K., Y. Nishikata, S. Namwong, S. Tanasupawat, K. Takada, and K. Oda. 2005. Purification and characterization of serine proteinase from a halophilic bacterium, Filobacillus sp. RF2-5. Biosci. Biotechnol. Biochem. 69: 38-44. https://doi.org/10.1271/bbb.69.38
  9. Jeanmougin, F., J. D. Thompson, M. Gouy, D. G. Higgin, and T. J. Gibson. 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23: 403-405. https://doi.org/10.1016/S0968-0004(98)01285-7
  10. Kamekura, M. and Y. Seno. 1990. A halophilic extracellular protease from a halophilic archaebacterium strain 172 P1. Biochem. Cell Biol. 68: 352-359. https://doi.org/10.1139/o90-048
  11. Kamekura, M., Y. Seno, and M. L. Dyall-Smith. 1996. Halolysin R4, a serine proteinase from the halophilic archaeon Haloferax mediterranei; gene cloning, expression and structural studies. Biochim. Biophys. Acta 1294: 159-167. https://doi.org/10.1016/0167-4838(96)00016-7
  12. Kamekura, M., Y. Seno, M. L. Holmes, and M. L. Dyall-Smith. 1992. Molecular cloning and sequencing of the gene for a halophilic alkaline serine protease (halolysin) from an unidentified halophilic archaea strain (172P1) and expression of the gene in Haloferax volcanii. J. Bacteriol. 174: 736-742. https://doi.org/10.1128/jb.174.3.736-742.1992
  13. Kamekura, M. and H. Onishi. 1974. Protease formation by a moderately halophilic Bacillus strain. Appl. Microbiol. 27: 809-810.
  14. Karan, R. and S. K. Khare. 2010. Purification and characterization of a solvent-stable protease from Geomicrobium sp. EMB2. Environ. Technol. 10: 1061-1072.
  15. Karbalaei-Heidari, H. R., M. A. Amoozegar, M. Hajighasemi, A. A. Ziaee, and A. Ventosa. 2009. Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium Halobacillus karajensis. J. Ind. Microbiol. Biotechnol. 36: 21-27. https://doi.org/10.1007/s10295-008-0466-y
  16. Karbalaei-Heidari, H. R., A. A. Ziaee, and M. A. Amoozegar. 2007. Purification and biochemical characterization of a protease secreted by the Salinivibrio sp. strain AF-2004 and its behavior in organic solvents. Extremophiles 11: 237-243. https://doi.org/10.1007/s00792-006-0031-4
  17. Karbalaei-Heidari, H. R., A. A. Ziaee, M. A. Amoozegar, Y. Cheburkin, and N. Budisa. 2008. Molecular cloning and sequence analysis of a novel zinc metalloprotease gene from the Salinivibrio sp. strain AF-2004 and its extracellular expression in E. coli. Gene 408: 196-203. https://doi.org/10.1016/j.gene.2007.11.002
  18. Kyte, J. and R. F. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132. https://doi.org/10.1016/0022-2836(82)90515-0
  19. Lanyi, J. K. 1974. Salt dependent properties of proteins from extremely halophilic bacteria. Bacteriol. Rev. 38: 272-290.
  20. Madern, D., C. Ebel, and G. Zaccai. 2000. Halophilic adaptation of enzymes. Extremophiles 4: 91-98. https://doi.org/10.1007/s007920050142
  21. Mevarech, M., F. Frolow, and L. M. Gloss. 2000. Halophilic enzymes: Proteins with a grain of salt. Biophys. Chem. 86: 155-164. https://doi.org/10.1016/S0301-4622(00)00126-5
  22. Namwong, S., T. Hiroga, K. Takada, M. Tsunemi, S. Tanasupawat, and K. Oda. 2006. Halophilic serine protease from Halobacillus sp. SR5-3 isolated from fish sauce: Purification and characterization. Biosci. Biotechnol. Biochem. 70: 1395-1401. https://doi.org/10.1271/bbb.50658
  23. Ogino, H., T. Uchiho, J. Yokoo, R. Kobayashi, R. Ichise, and H. Ishikawa. 2001. Role of intermolecular disulfide bonds of the organic solvent-stable PST-01 protease in its organic solvent stability. Appl. Environ. Microbiol. 67: 942-947. https://doi.org/10.1128/AEM.67.2.942-947.2001
  24. Ruiz, D. M. and R. E. De Castro. 2007. Effect of organic solvents on the activity and stability of an extracellular protease secreted by the haloalkaliphilic archaeon Natrialba magadii. J. Ind. Microbiol. Biotechnol. 34: 111-115. https://doi.org/10.1007/s10295-006-0174-4
  25. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  26. Sambrook, J. and D. W. Russell. 2000. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
  27. Sanchez-Porro, C., E. Mellado, C. Bertoldo, G. Antranikian, and A. Ventosa. 2003. Screening and characterization of the protease CP1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. strain CP76. Extremophiles 7: 221-228.
  28. Sanchez-Porro, C., E. Mellado, A. P. Pugsley, O. Francetic, and A. Ventosa. 2009. The haloprotease CPI produced by the moderately halophilic bacterium Pseudoalteromonas ruthenica is secreted by the type II secretion pathway. Appl. Environ. Microbiol. 75: 4197-4201. https://doi.org/10.1128/AEM.00156-09
  29. Shi, W., X. F. Tang, Y. Huang, F. Gan, B. Tang, and P. Shen. 2006. An extracellular halophilic protease SptA from a halophilic archaeon Natrinema sp J7: Gene cloning, expression and characterization. Extremophiles 10: 599-606. https://doi.org/10.1007/s00792-006-0003-8
  30. Thummler, F., A. Beetz, and W. Rudiger. 1990. Phytochrome in lower plants: Detection and partial sequence of a phytochrome gene in the moss Ceratodon purpureus using the polymerase chain reaction. FEBS Lett. 275: 125-129. https://doi.org/10.1016/0014-5793(90)81455-W
  31. Wu, S., J. Skolnick, and Y. Zhang. 2007. Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol. 5: 17-26. https://doi.org/10.1186/1741-7007-5-17
  32. Yan, B. Q., X. L. Chen, X. Y. Hou, H. He, B. C. Zhou, and Y. Z. Zhang. 2009. Molecular analysis of the gene encoding a cold-adapted halophilic subtilase from deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913: Cloning, expression, characterization and function analysis of the C-terminal PPC domains. Extremophiles 4: 725-733.
  33. Zhang, Y. 2007. Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 8: 108-117.
  34. Zhang, Y. 2008. I-TASSER server for protein 3D structure prediction BMC. Bioinformatics 9: 40.
  35. Zhang, Y., D. D. Bak, H. Heid, and K. Geider. 1999. Molecular characterization of a protease secreted by Erwinia amylovora. J. Mol. Biol. 289: 1239-1251. https://doi.org/10.1006/jmbi.1999.2846

Cited by

  1. Halophilic hydrolases as a new tool for the biotechnological industries vol.92, pp.13, 2011, https://doi.org/10.1002/jsfa.5860
  2. Differential interactions of halophilic and non-halophilic proteases with nanoparticles vol.2, pp.None, 2011, https://doi.org/10.1186/2043-7129-2-4
  3. Structural Changes in Halophilic and Non-halophilic Proteases in Response to Chaotropic Reagents vol.33, pp.4, 2014, https://doi.org/10.1007/s10930-014-9571-0
  4. Effect of organic solvents on the structure and activity of moderately halophilic Bacillus sp. EMB9 protease vol.18, pp.6, 2014, https://doi.org/10.1007/s00792-014-0683-4
  5. Cloning, heterologous expression and structural characterization of an alkaline serine protease from sea water haloalkaliphilic bacterium vol.65, pp.1, 2011, https://doi.org/10.1007/s13213-014-0869-0
  6. Cloning, Expression, and Structural Elucidation of a Biotechnologically Potential Alkaline Serine Protease From a Newly Isolated Haloalkaliphilic Bacillus lehensis JO-26 vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.00941