참고문헌
- Ahmed, N., U. Ahmed, P. J. Thornalley, K. Hager, G. Fleischer, and G. Munch. 2005. Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimer's disease and link to cognitive impairment. J. Neurochem. 92: 255-263. https://doi.org/10.1111/j.1471-4159.2004.02864.x
- Albertyn, J., S. Hohmann, J. M. Thevelein, and B. A. Prior. 1994. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol. Cell Biol. 14: 4135-4144. https://doi.org/10.1128/MCB.14.6.4135
- Ayoub, F., M. Zaman, P. Thornalley, and J. Masters. 1993. Glyoxalase activities in human tumour cell lines in vitro. Anticancer Res. 13: 151-155.
-
Blomberg, A. and L. Adler. 1989. Roles of glycerol and glycerol-3-phosphate dehydrogenase (
$NAD^{+}$ ) in acquired osmotolerance of Saccharomyces cerevisiae. J. Bacteriol. 171: 1087-1092. https://doi.org/10.1128/jb.171.2.1087-1092.1989 - Burg, M. B., E. D. Kwon, and D. Kultz. 1996. Osmotic regulation of gene expression. FASEB J. 10: 1598-1606. https://doi.org/10.1096/fasebj.10.14.9002551
- Chenna, R., H. Sugawara, T. Koike, R. Lopez, T. J. Gibson, D. G. Higgins, and J. D. Thompson. 2003. Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res. 31: 3497-3500. https://doi.org/10.1093/nar/gkg500
- Clugston, S. L., E. Daub, R. Kinach, D. Miedema, J. F. Barnard, and J. F. Honek. 1997. Isolation and sequencing of a gene coding for glyoxalase I activity from Salmonella typhimurium and comparison with other glyoxalase I sequences. Gene 186: 103-111. https://doi.org/10.1016/S0378-1119(96)00691-9
- Du, J., H. Suzuki, F. Nagase, A. A. Akhand, T. Yokoyama, T. Miyata, K. Kurokawa, and I. Nakashima. 2000. Methylglyoxal induces apoptosis in Jurkat leukemia T cells by activating c-Jun N-terminal kinase. J. Cell Biochem. 77: 333-344. https://doi.org/10.1002/(SICI)1097-4644(20000501)77:2<333::AID-JCB15>3.0.CO;2-Q
- Felsenstein, J. 2001. Taking variation of evolutionary rates between sites into account in inferring phylogenies. J. Mol. Evol. 53: 447-455. https://doi.org/10.1007/s002390010234
-
Ferguson, G. P., A. D. Chacko, C. H. Lee, and I. R. Booth. 1996. The activity of the high-affinity
$K^{+}$ uptake system Kdp sensitizes cells of Escherichia coli to methylglyoxal. J. Bacteriol. 178: 3957-3961. https://doi.org/10.1128/jb.178.13.3957-3961.1996 - Gietz, R. D. and R. A. Woods. 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350: 87-96.
- Hohmann, S. 2002. Osmotic adaptation in yeast - control of the yeast osmolyte system. Int. Rev. Cytol. 215: 149-187.
- Hohmann, S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66: 300-372. https://doi.org/10.1128/MMBR.66.2.300-372.2002
- Hohmann, S., M. Krantz, and B. Nordlander. 2007. Yeast osmoregulation. Methods Enzymol. 428: 29-45.
- Inoue, Y. and A. Kimura. 1995. Methylglyoxal and regulation of its metabolism in microorganisms. Adv. Microb. Physiol. 37: 177-227.
- Inoue, Y. and A. Kimura. 1996. Identification of the structural gene for glyoxalase I from Saccharomyces cerevisiae. J. Biol. Chem. 271: 25958-25965. https://doi.org/10.1074/jbc.271.42.25958
- Inoue, Y., Y. Tsujimoto, and A. Kimura. 1998. Expression of the glyoxalase I gene of Saccharomyces cerevisiae is regulated by high osmolarity glycerol mitogen-activated protein kinase pathway in osmotic stress response. J. Biol. Chem. 273: 2977-2983. https://doi.org/10.1074/jbc.273.5.2977
- Junaid, M. A., D. Kowal, M. Barua, P. S. Pullarkat, S. Sklower Brooks, and R. K. Pullarkat. 2004. Proteomic studies identified a single nucleotide polymorphism in glyoxalase I as autism susceptibility factor. Am. J. Med. Genet. A 131: 11-17.
- Kalapos, M. P. 1999. Methylglyoxal in living organisms: Chemistry, biochemistry, toxicology and biological implications. Toxicol. Lett. 110: 145-175. https://doi.org/10.1016/S0378-4274(99)00160-5
- Kang, Y., L. G. Edwards, and P. J. Thornalley. 1996. Effect of methylglyoxal on human leukaemia 60 cell growth: Modification of DNA G1 growth arrest and induction of apoptosis. Leuk. Res. 20: 397-405. https://doi.org/10.1016/0145-2126(95)00162-X
- Kim, N. S., Y. Umezawa, S. Ohmura, and S. Kato. 1993. Human glyoxalase I. cDNA cloning, expression, and sequence similarity to glyoxalase I from Pseudomonas putida. J. Biol. Chem. 268: 11217-11221.
- Kim, S. Y., Y. J. Jeon, and J. H. Seo. 1996. Analysis of fermentation characteristics for production of erythritol by Candida sp. Kor. J. Food Sci. Technol. 28: 935-939.
- Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150-163. https://doi.org/10.1093/bib/5.2.150
- Lee, D. H., M. D. Kim, Y. W. Ryu, and J. H. Seo. 2008. Cloning and characterization of CmGPD1, the Candida magnoliae homologue of glycerol-3-phosphate dehydrogenase. FEMS Yeast Res. 8: 1324-1333. https://doi.org/10.1111/j.1567-1364.2008.00446.x
- Lu, T., D. J. Creighton, M. Antoine, C. Fenselau, and P. S. Lovett. 1994. The gene encoding glyoxalase I from Pseudomonas putida: Cloning, overexpression, and sequence comparisons with human glyoxalase I. Gene 150: 93-96. https://doi.org/10.1016/0378-1119(94)90864-8
- Maeta, K., K. Mori, Y. Takatsume, S. Izawa, and Y. Inoue. 2005. Diagnosis of cell death induced by methylglyoxal, a metabolite derived from glycolysis, in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 243: 87-92. https://doi.org/10.1016/j.femsle.2004.11.046
- Norbeck, J., A. K. Pahlman, N. Akhtar, A. Blomberg, and L. Adler. 1996. Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 271: 13875-13881. https://doi.org/10.1074/jbc.271.23.13875
- Ranganathan, S., E. S. Walsh, A. K. Godwin, and K. D. Tew. 1993. Cloning and characterization of human colon glyoxalase-I. J. Biol. Chem. 268: 5661-5667.
- Ratliff, D. M., D. J. Vander Jagt, R. P. Eaton, and D. L. Vander Jagt. 1996. Increased levels of methylglyoxal-metabolizing enzymes in mononuclear and polymorphonuclear cells from insulindependent diabetic patients with diabetic complications: Aldose reductase, glyoxalase I, and glyoxalase II-a clinical research center study. J. Clin. Endocrinol. Metab. 81: 488-492. https://doi.org/10.1210/jc.81.2.488
- Saito, H. and K. Tatebayashi. 2004. Regulation of the osmoregulatory HOG MAPK cascade in yeast. J. Biochem. 136: 267-272. https://doi.org/10.1093/jb/mvh135
- Sambrook, J. and D. W. Russell. 2001. Molecular Cloning, pp. 1.119-1.122, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- Schuller, C., J. L. Brewster, M. R. Alexander, M. C. Gustin, and H. Ruis. 1994. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J. 13: 4382-4389.
- Takatsume, Y., S. Izawa, and Y. Inoue. 2004. Identification of thermostable glyoxalase I in the fission yeast Schizosaccharomyces pombe. Arch. Microbiol. 181: 371-377. https://doi.org/10.1007/s00203-004-0666-4
- Takatsume, Y., S. Izawa, and Y. Inoue. 2005. Unique regulation of glyoxalase I activity during osmotic stress response in the fission yeast Schizosaccharomyces pombe: Neither the mRNA nor the protein level of glyoxalase I increase under conditions that enhance its activity. Arch. Microbiol. 183: 224-227. https://doi.org/10.1007/s00203-005-0762-0
- Thornalley, P. J. 1990. The glyoxalase system: New developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem. J. 269: 1-11. https://doi.org/10.1042/bj2690001
- Thornalley, P. J. 1993. The glyoxalase system in health and disease. Mol. Aspects Med. 14: 287-371. https://doi.org/10.1016/0098-2997(93)90002-U
- Yu, J. H., D. H. Lee, Y. J. Oh, K. C. Han, Y. W. Ryu, and J. H. Seo. 2006. Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer. Appl. Biochem. Biotechnol. 131: 870-879. https://doi.org/10.1385/ABAB:131:1:870
피인용 문헌
- Cloning of Orotidine-5'-phosphate Decarboxylase (URA3) Gene from Sourdough Yeast Candida milleri CBS 8195 vol.21, pp.5, 2012, https://doi.org/10.1007/s10068-012-0164-4
- Cloning and Functional Verification of the Candida milleri HIS3 Gene Encoding Imidazoleglycerol Phosphate Dehydratase vol.22, pp.10, 2012, https://doi.org/10.4014/jmb.1207.07064
- Cloning of the Transketolase Gene from Erythritol-Producing Yeast Candida magnoliae vol.24, pp.10, 2014, https://doi.org/10.4014/jmb.1407.07032
- Isolation of the Inositol Phosphoceramide Synthase Gene (AUR1) from Stress-Tolerant Yeast Pichia kudriavzevii vol.25, pp.11, 2011, https://doi.org/10.4014/jmb.1508.08019
- 김치에서 분리된 Lactobacillus buchneri의 젖산 생산 특성 vol.43, pp.3, 2015, https://doi.org/10.4014/mbl.1506.06006
- 막걸리로부터 분리된 Bacillus amyloliquefaciens 균주의 항균 활성 vol.44, pp.1, 2016, https://doi.org/10.4014/mbl.1511.11005