DOI QR코드

DOI QR Code

A Novel Metalloprotease from the Wild Basidiomycete Mushroom Lepista nuda

  • Wu, Y.Y. (State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University) ;
  • Wang, H.X. (State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University) ;
  • Ng, T.B. (School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong)
  • Received : 2010.10.26
  • Accepted : 2010.12.18
  • Published : 2011.03.28

Abstract

A 20.9-kDa metalloprotease was isolated from dried fruiting bodies of the wild basidiomycete mushroom Lepista nuda. The N-terminal amino acid sequence of the protease was seen to be ATFVLTAATNTLFTA, thus displaying no similarity with the sequences of previously reported metalloproteases. The protease was purified using a procedure that entailed ion-exchange chromatography on CM-Cellulose, Q-Sepharose, and Mono S, and FPLC-gel filtration on Superdex 75. The protease functioned at an optimum pH of 7.0 and an optimum temperature of $50^{\circ}C$. It was also noted that the protease demonstrated a proteolytic activity of 1,756 U/mg toward casein. The $K_m$ of the purified protease toward casein was 6.36 mg/ml at a pH of 7.0 and with a temperature of $37^{\circ}C$, whereas the $V_{max}$ was 9.11 ${\mu}g\;ml^{-1}\;min^{-1}$. The activity of the protease was adversely affected by EDTA-2Na, suggesting that it is a metalloprotease. PMSF, EGTA, aprotinin, and leupeptin exerted no striking inhibitory effect. The activity of the protease was enhanced by $Fe^{2+}$, but was curtailed by $Cd^{2+}$, $Cu^{2+}$, $Hg^{2+}$, $Pb^{2+}$, $Zn^{2+}$, and $Fe^{2+}$ ions. The protease also exhibited inhibitory activity against HIV-1 reverse transcriptase with an $IC_{50}$ value of 4.00 ${\mu}M$. The $IC_{50}$ values toward hepatoma Hep G2 and leukemia L1210 cells in vitro were 4.99 ${\mu}M$ and 3.67 ${\mu}M$, respectively.

Keywords

References

  1. Adil, A. and S. Mohammed. 1998. Alkaline proteases: A review. Bioresour. Technol. 64: 175-183. https://doi.org/10.1016/S0960-8524(97)00182-X
  2. Barros, L., B. A. Venturini, P. Baptista, L. M. Estevinho, and I. C. Ferreira. 2008. Chemical composition and biological properties of Portuguese wild mushrooms: A comprehensive study. J. Agric. Food Chem. 56: 3856-3862. https://doi.org/10.1021/jf8003114
  3. Bottcher, M. and F. Grosse. 1997. HIV-1 protease inhibits its homologous reverse transcriptase by protein-protein interaction. Nucleic Acids Res. 25: 1709-1714. https://doi.org/10.1093/nar/25.9.1709
  4. Burton, K. S., D. A. Wood, C. F. Thurston, and P. J. Barker. 1993. Purification and characterization of a serine proteinase from senescent sporophores of the commercial mushroom Agaricus bisporus. J. Gen. Microbiol. 139(Pt 6): 1379-1386. https://doi.org/10.1099/00221287-139-6-1379
  5. Dulger, B., C. C. Ergul, and F. Gucin. 2002. Antimicrobial activity of the macrofungus Lepista nuda. Fitoterapia 73: 695-697. https://doi.org/10.1016/S0367-326X(02)00233-2
  6. Feng, K., Q. H. Liu, T. B. Ng, H. Z. Liu, J. Q. Li, G. Chen, H. Y. Sheng, Z. L. Xie, and H. X. Wang. 2006. Isolation and characterization of a novel lectin from the mushroom Armillaria luteo-virens. Biochem. Biophys. Res. Commun. 345: 1573-1578. https://doi.org/10.1016/j.bbrc.2006.05.061
  7. Gabriel, J., P. Baldrian, K. Hladikova, and M. Hakova. 2001. Copper sorption by native and modified pellets of wood-rotting basidiomycetes. Lett. Appl. Microbiol. 32: 194-198. https://doi.org/10.1046/j.1472-765x.2001.00888.x
  8. Hodgson, J. 1994. The changing bulk biocatalyst market. Biotechnology (NY) 12: 789-790. https://doi.org/10.1038/nbt0894-789
  9. Kalac, P., J. Burda, and I. Staskova. 1991. Concentrations of lead, cadmium, mercury and copper in mushrooms in the vicinity of a lead smelter. Sci. Total Environ. 105: 109-119. https://doi.org/10.1016/0048-9697(91)90333-A
  10. Kalisz, H. M. 1988. Microbial proteinases. Adv. Biochem. Eng. Biotechnol. 36: 1-65.
  11. Keay, L. and B. S. Wildi. 1970. Proteases of the genus Bacillus. I. Neutral proteases. Biotechnol. Bioeng. 12: 179-212. https://doi.org/10.1002/bit.260120205
  12. Kim, J. H. and Y. S. Kim. 1999. A fibrinolytic metalloprotease from the fruiting bodies of an edible mushroom, Armillariella mellea. Biosci. Biotechnol. Biochem. 63: 2130-2136. https://doi.org/10.1271/bbb.63.2130
  13. Kim, J. H. and Y. S. Kim. 2001. Characterization of a metalloenzyme from a wild mushroom, Tricholoma saponaceum. Biosci. Biotechnol. Biochem. 65: 356-362. https://doi.org/10.1271/bbb.65.356
  14. Kumar, C. G. and H. Takagi. 1999. Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnol. Adv. 17: 561-594. https://doi.org/10.1016/S0734-9750(99)00027-0
  15. Laemmli, U. K. and M. Favre. 1973. Maturation of the head of bacteriophage T4. I. DNA packaging events. J. Mol. Biol. 80: 575-599. https://doi.org/10.1016/0022-2836(73)90198-8
  16. Lam, S. S., H. Wang, and T. B. Ng. 1998. Purification and characterization of novel ribosome inactivating proteins, alphaand beta-pisavins, from seeds of the garden pea Pisum sativum. Biochem. Biophys. Res. Commun. 253: 135-142. https://doi.org/10.1006/bbrc.1998.9764
  17. Liu, M., J. Li, F. Kong, J. Lin, and Y. Gao. 1998. Induction of immunomodulating cytokines by a new polysaccharidepeptide complex from culture mycelia of Lentinus edodes. Immunopharmacology 40: 187-198. https://doi.org/10.1016/S0162-3109(98)00043-5
  18. Mares-Guia, M. and E. Shaw. 1965. Studies on the active center of trypsin. The binding of amidines and guanidines as models of the substrate side chain. J. Biol. Chem. 240: 1579-1585.
  19. Matta, H. and V. Punj. 1998. Isolation and partial characterization of a thermostable extracellular protease of Bacillus polymyxa B-17. Int. J. Food Microbiol. 42: 139-145. https://doi.org/10.1016/S0168-1605(98)00061-0
  20. Melgar, M. J., J. Alonso, and M. A. Garcia. 2009. Mercury in edible mushrooms and underlying soil: Bioconcentration factors and toxicological risk. Sci. Total Environ. 407: 5328-5334. https://doi.org/10.1016/j.scitotenv.2009.07.001
  21. Ng, T. B. 1998. A review of research on the protein-bound polysaccharide (polysaccharopeptide, psp) from the mushroom Coriolus versicolor (Basidiomycetes: Polyporaceae). Gen. Pharmacol. 30: 1-4. https://doi.org/10.1016/S0306-3623(97)00076-1
  22. Nonaka, T., H. Ishikawa, Y. Tsumuraya, Y. Hashimoto, and N. Dohmae. 1995. Characterization of a thermostable lysine-specific metalloendopeptidase from the fruiting bodies of a basidiomycete, Grifola frondosa. J. Biochem. 118: 1014-1020. https://doi.org/10.1093/jb/118.5.1014
  23. Palmieri, G., C. Bianco, G. Cennamo, P. Giardina, G. Marino, M. Monti, and G. Sannia. 2001. Purification, characterization, and functional role of a novel extracellular protease from Pleurotus ostreatus. Appl. Environ. Microbiol. 67: 2754-2759. https://doi.org/10.1128/AEM.67.6.2754-2759.2001
  24. Sesli, E., M. Tuzen, and M. Soylak. 2008. Evaluation of trace metal contents of some wild edible mushrooms from Black Sea region, Turkey. J. Hazard. Mater. 160: 462-467. https://doi.org/10.1016/j.jhazmat.2008.03.020
  25. Shaginian, K. A., I. A. Alekhina, and N. P. Denisova. 1990. Serine proteinase from the higher basidiomycetes of Coprinus genus. Biokhimiia 55: 1387-1395.
  26. Shen, M. H., J. S. Kim, K. Sapkota, S. E. Park, B. S. Choi, S. Kim, et al. 2007. Purification, characterization, and cloning of fibrinolytic metalloprotease from Pleurotus ostreatus mycelia. J. Microbiol. Biotechnol. 17: 1271-1283.
  27. Soponsathien, S. 1998. Some characteristics of ammonia fungi 1. In relation to their ligninolytic enzyme activities. J. Gen. Appl. Microbiol. 44: 337-345. https://doi.org/10.2323/jgam.44.337
  28. Suzuki, M., S. Higuchi, Y. Taki, S. Taki, K. Miwa, and J. Hamuro. 1990. Induction of endogenous lymphokine-activated killer activity by combined administration of lentinan and interleukin 2. Int. J. Immunopharmacol. 12: 613-623. https://doi.org/10.1016/0192-0561(90)90098-8
  29. Wang, H. and T. B. Ng. 2006. Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum. Peptides 27: 27-30. https://doi.org/10.1016/j.peptides.2005.06.009
  30. Wang, H., T. B. Ng, and Q. Liu. 2003. A novel lectin from the wild mushroom Polyporus adusta. Biochem. Biophys. Res. Commun. 307: 535-539. https://doi.org/10.1016/S0006-291X(03)01230-0
  31. Wang, H. and T. B. Ng. 2001. Isolation and characterization of velutin, a novel low-molecular-weight ribosome-inactivating protein from winter mushroom (Flammulina velutipes) fruiting bodies. Life Sci. 68: 2151-2158. https://doi.org/10.1016/S0024-3205(01)01023-2
  32. Wang, H. and T. B. Ng. 2001. Pleureryn, a novel protease from fresh fruiting bodies of the edible mushroom Pleurotus eryngii. Biochem. Biophys. Res. Commun. 289: 750-755. https://doi.org/10.1006/bbrc.2001.6037
  33. Wang, H. X. and T. B. Ng. 2001. Isolation of pleuturegin, a novel ribosome-inactivating protein from fresh sclerotia of the edible mushroom Pleurotus tuber-regium. Biochem. Biophys. Res. Commun. 288: 718-721. https://doi.org/10.1006/bbrc.2001.5816
  34. Wang, H. X., W. K. Liu, T. B. Ng, V. E. Ooi, and S. T. Chang. 1995. Immunomodulatory and antitumor activities of a polysaccharidepeptide complex from a mycelial culture of Tricholoma sp., a local edible mushroom. Life Sci. 57: 269-281. https://doi.org/10.1016/0024-3205(95)00270-G
  35. Wang, H. X., T. B. Ng, W. K. Liu, V. E. Ooi, and S. T. Chang. 1996. Polysaccharide-peptide complexes from the cultured mycelia of the mushroom Coriolus versicolor and their culture medium activate mouse lymphocytes and macrophages. Int. J. Biochem. Cell Biol. 28: 601-607. https://doi.org/10.1016/1357-2725(95)00157-3
  36. Wong, J. H., C. C. Wong, and T. B. Ng. 2006. Purification and characterization of a galactose-specific lectin with mitogenic activity from pinto beans. Biochim. Biophys. Acta 1760: 808-813. https://doi.org/10.1016/j.bbagen.2006.02.015
  37. Wu, D. M., W. Q. Duan, Y. Liu, and Y. Cen. 2010. Antiinflammatory effect of the polysaccharides of golden needle mushroom in burned rats. Int. J. Biol. Macromol. 46: 100-103. https://doi.org/10.1016/j.ijbiomac.2009.10.013
  38. Yaoita, Y., R. Kohata, R. Kakuda, K. Machida, and M. Kikuchi. 2002. Ceramide constituents from five mushrooms. Chem. Pharm. Bull. (Tokyo) 50: 681-684. https://doi.org/10.1248/cpb.50.681
  39. Yaoita, Y., K. Matsuki, T. Iijima, S. Nakano, R. Kakuda, K. Machida, and M. Kikuchi. 2001. New sterols and triterpenoids from four edible mushrooms. Chem. Pharm. Bull. (Tokyo) 49: 589-594. https://doi.org/10.1248/cpb.49.589
  40. Zhang, G. Q., J. Sun, H. X. Wang, and T. B. Ng. 2009. A novel lectin with antiproliferative activity from the medicinal mushroom Pholiota adiposa. Acta Biochim. Pol. 56: 415-421.
  41. Zhang, X. Q., Q. H. Liu, G. Q. Zhang, H. X. Wang, and T. B. Ng. 2010. Purification and molecular cloning of a serine protease from the mushroom Hypsizigus marmoreus. Process. Biochemistry 45: 724-730. https://doi.org/10.1016/j.procbio.2010.01.009
  42. Zheng, R., S. Jie, D. Hanchuan, and W. Moucheng. 2005. Characterization and immunomodulating activities of polysaccharide from Lentinus edodes. Int. Immunopharmacol. 5: 811-820. https://doi.org/10.1016/j.intimp.2004.11.011

Cited by

  1. Clitocybe nuda Activates Dendritic Cells and Acts as a DNA Vaccine Adjuvant vol.2013, pp.None, 2011, https://doi.org/10.1155/2013/761454
  2. Transcriptome and Proteome Exploration to Provide a Resource for the Study of Agrocybe aegerita vol.8, pp.2, 2011, https://doi.org/10.1371/journal.pone.0056686
  3. Development of SCAR Markers to Determine the Mating Types of Lepista nuda Protoplast Monokaryons vol.68, pp.4, 2011, https://doi.org/10.1007/s00284-013-0510-7
  4. Purification and Characterization of a White Laccase with Pronounced Dye Decolorizing Ability and HIV-1 Reverse Transcriptase Inhibitory Activity from Lepista nuda vol.21, pp.4, 2016, https://doi.org/10.3390/molecules21040415
  5. Proteolytic Activity of Edible Spruce Morchella esculenta vol.63, pp.2, 2011, https://doi.org/10.2478/fv-2019-0020