References
- Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Brahamsha, B. and E. Greenberg. 1987. Complementation of a trpE deletion in Escherichia coli by Spirochaeta aurantia DNA encoding anthranilate synthetase component I activity. J. Bacteriol. 169: 3764-3769. https://doi.org/10.1128/jb.169.8.3764-3769.1987
- Coker, J., P. Sheridan, J. Loveland-Curtze, K. Gutshall, A. Auman, and J. Brenchley. 2003. Biochemical characterization of a {beta}-galactosidase with a low temperature optimum obtained from an antarctic Arthrobacter isolate. J. Bacteriol. 185: 5473-5482. https://doi.org/10.1128/JB.185.18.5473-5482.2003
- Coombs, J. and J. Brenchley. 1999. Biochemical and phylogenetic analyses of a cold-active beta-galactosidase from the lactic acid bacterium Carnobacterium piscicola BA. Appl. Environ. Microbiol. 65: 5443-5450.
- D'amico, S., T. Collins, J. C. Marx, G. Feller, and C. Gerday. 2006. Psychrophilic microorganisms: Challenges for life. EMBO Rep. 7: 385-389. https://doi.org/10.1038/sj.embor.7400662
- Gutshall, K., D. Trimbur, J. Kasmir, and J. Brenchley. 1995. Analysis of a novel gene and beta-galactosidase isozyme from a psychrotrophic Arthrobacter isolate. J. Bacteriol. 177: 1981-1988. https://doi.org/10.1128/jb.177.8.1981-1988.1995
- Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316. https://doi.org/10.1042/bj2800309
- Henrissat, B., I. Callebaut, S. Fabrega, P. Lehn, J. Mornon, and G. Davies. 1995. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc. Natl. Acad. Sci. USA 92: 7090-7094. https://doi.org/10.1073/pnas.92.15.7090
- Hoyoux, A., I. Jennes, P. Dubois, S. Genicot, F. Dubail, J. Francois, E. Baise, G. Feller, and C. Gerday. 2001. Coldadapted {beta}-galactosidase from the antarctic psychrophile Pseudoalteromonas haloplanktis. Appl. Environ. Microbiol. 67: 1529-1535. https://doi.org/10.1128/AEM.67.4.1529-1535.2001
-
Karasova-Lipovova, P., H. Strnad, V. Spiwok, S. Mala, B. Kralova, and N. Russell. 2003. The cloning, purification and characterisation of a cold-active
$\beta$ -galactosidase from the psychrotolerant antarctic bacterium Arthrobacter sp. C2-2. Enz. Microb. Technol. 33: 836-844. https://doi.org/10.1016/S0141-0229(03)00211-4 - Loveland, J., K. Gutshall, J. Kasmir, P. Prema, and J. Brenchley. 1994. Characterization of psychrotrophic microorganisms producing beta-galactosidase activities. Appl. Environ. Microbiol. 60: 12-18.
- Margesin, R. and F. Schinner. 1994. Properties of cold-adapted microorganisms and their potential role in biotechnology. J. Biotechnol. 33: 1-14. https://doi.org/10.1016/0168-1656(94)90093-0
- Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- Nakagawa, T., Y. Fujimoto, R. Ikehata, T. Miyaji, and N. Tomizuka. 2006. Purification and molecular characterization of coldactive beta-galactosidase from Arthrobacter psychrolactophilus strain F2. Appl. Microbiol. Biotechnol. 72: 720-725. https://doi.org/10.1007/s00253-006-0339-0
- Nakagawa, T., Y. Fujimoto, M. Uchino, T. Miyaji, K. Takano, and N. Tomizuka. 2003. Isolation and characterization of psychrophiles producing cold-active-galactosidase. Lett. Appl. Microbiol. 37: 154-157. https://doi.org/10.1046/j.1472-765X.2003.01369.x
- Nakagawa, T., K. Yamada, T. Miyaji, and N. Tomizuka. 2002. Cold-active pectinolytic activity of psychrophilic-basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. J. Biosci. Bioengin. 94: 175-177. https://doi.org/10.1016/S1389-1723(02)80140-2
- Nichtl, A., J. Buchner, R. Jaenicke, R. Rudolph, and T. Scheibel. 1998. Folding and association of [beta]-galactosidase1. J. Molec. Biol. 282: 1083-1091. https://doi.org/10.1006/jmbi.1998.2075
- Seiboth, B., L. Hartl, N. Salovuori, K. Lanthaler, G. Robson, J. Vehmaanpera, M. Penttila, and C. Kubicek. 2005. Role of the bga1-encoded extracellular {beta}-galactosidase of Hypocrea jecorina in cellulase induction by lactose. Appl. Environ. microbiology 71: 851-857. https://doi.org/10.1128/AEM.71.2.851-857.2005
- Shukla, T. and L. Wierzbicki. 1975. Beta-galactosidase technology: A solution to the lactose problem. Crit. Rev. Food Sci. Nutr. 5: 325-356.
- Stricker, A., K. Grosstessner-Hain, E. Wurleitner, and R. Mach. 2006. Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot. Cell 5: 2128-2137.
- Trimbur, D., K. Gutshall, P. Prema, and J. Brenchley. 1994. Characterization of a psychrotrophic arthrobacter gene and its cold-active beta-galactosidase. Appl. Environ. Microbiol. 60: 4544-4552.
- Xiao, X., M. Li, Z. You, and F. Wang. 2007. Bacterial communities inside and in the vicinity of the Chinese Great Wall Station, King George Island, Antarctica. Antarctic Sci. 19: 11-16.
- Zahner, D. and R. Hakenbeck. 2000. The Streptococcus pneumoniae beta-galactosidase is a surface protein. J. Bacteriol. 182: 5919-5921. https://doi.org/10.1128/JB.182.20.5919-5921.2000
Cited by
- Cold active β-galactosidase from Thalassospira sp. 3SC-21 to use in milk lactose hydrolysis: a novel source from deep waters of Bay-of-Bengal vol.28, pp.9, 2011, https://doi.org/10.1007/s11274-012-1097-z
- Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi vol.13, pp.None, 2011, https://doi.org/10.1186/1472-6750-13-3
- The acid tolerant and cold-active β-galactosidase from Lactococcus lactis strain is an attractive biocatalyst for lactose hydrolysis vol.103, pp.4, 2013, https://doi.org/10.1007/s10482-012-9852-6
- A Novel Ratiometric Fluorescent Probe for Highly Sensitive and Selective Detection of β‐Galactosidase in Living Cells vol.37, pp.4, 2011, https://doi.org/10.1002/cjoc.201800539
- Enzymes from Marine Polar Regions and Their Biotechnological Applications vol.17, pp.10, 2011, https://doi.org/10.3390/md17100544
- A New β-Galactosidase from the Antarctic Bacterium Alteromonas sp. ANT48 and Its Potential in Formation of Prebiotic Galacto-Oligosaccharides vol.17, pp.11, 2019, https://doi.org/10.3390/md17110599
- Cold-Active β-Galactosidases: Insight into Cold Adaptation Mechanisms and Biotechnological Exploitation vol.19, pp.1, 2011, https://doi.org/10.3390/md19010043