DOI QR코드

DOI QR Code

Molecular Characterization of Cold-Inducible ${\beta}$-Galactosidase from Arthrobacter sp. ON14 Isolated from Antarctica

  • Xu, Ke (School of Life Science, Xiamen University) ;
  • Tang, Xixiang (School of Life Science, Xiamen University) ;
  • Gai, Yingbao (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration) ;
  • Mehmood, Muhammad Aamer (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration) ;
  • Xiao, Xiang (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration) ;
  • Wang, Fengping (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration)
  • Received : 2010.09.08
  • Accepted : 2010.11.22
  • Published : 2011.03.28

Abstract

A psychrotrophic bacterium, Arthrobacter sp. ON14, isolated from Antarctica, was shown to exhibit a high ${\beta}$-galactosidase activity at a low temperature. A genomic library of ON14 was constructed and screened for ${\beta}$-galactosidase genes on functional plates containing 5-bromo-4-chloro-3-indolyl-${\beta}$-D-galactopyranoside (X-gal) as the substrate. Two different ${\beta}$-galactosidase genes, named as galA, galB, were found in ON14. Computational analyses of the genes revealed that the encoded protein GalA belongs to family 2 of glycosyl hydrolysases and is a cold-active protein, whereas GalB belongs to family 42 of glycosyl hydrolysases and is a mesophilic protein. Reverse transcription analyses revealed that the expression of galA is highly induced at a low temperature ($4^{\circ}C$ ) and repressed at a high temperature ($28^{\circ}C$ ) when lactose is used as the sole carbon source. Conversely, the expression of galB is inhibited at a low temperature and induced at a high temperature. The purified GalA showed its peak activity at $15^{\circ}C$ and pH 8. The mineral ions $Na^+$, $K^+$, $Mg^{2+}$, and $Mn^{2+}$ were identified as enzyme activators, whereas $Ca^{2+}$ had no influence on the enzyme activity. An enzyme stability assay revealed that the activity of GalA is significantly decreased when it is incubated at $45^{\circ}C$ for 2 h, and all its activity is lost when it is incubated at $50^{\circ}C$.

Keywords

References

  1. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  2. Brahamsha, B. and E. Greenberg. 1987. Complementation of a trpE deletion in Escherichia coli by Spirochaeta aurantia DNA encoding anthranilate synthetase component I activity. J. Bacteriol. 169: 3764-3769. https://doi.org/10.1128/jb.169.8.3764-3769.1987
  3. Coker, J., P. Sheridan, J. Loveland-Curtze, K. Gutshall, A. Auman, and J. Brenchley. 2003. Biochemical characterization of a {beta}-galactosidase with a low temperature optimum obtained from an antarctic Arthrobacter isolate. J. Bacteriol. 185: 5473-5482. https://doi.org/10.1128/JB.185.18.5473-5482.2003
  4. Coombs, J. and J. Brenchley. 1999. Biochemical and phylogenetic analyses of a cold-active beta-galactosidase from the lactic acid bacterium Carnobacterium piscicola BA. Appl. Environ. Microbiol. 65: 5443-5450.
  5. D'amico, S., T. Collins, J. C. Marx, G. Feller, and C. Gerday. 2006. Psychrophilic microorganisms: Challenges for life. EMBO Rep. 7: 385-389. https://doi.org/10.1038/sj.embor.7400662
  6. Gutshall, K., D. Trimbur, J. Kasmir, and J. Brenchley. 1995. Analysis of a novel gene and beta-galactosidase isozyme from a psychrotrophic Arthrobacter isolate. J. Bacteriol. 177: 1981-1988. https://doi.org/10.1128/jb.177.8.1981-1988.1995
  7. Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316. https://doi.org/10.1042/bj2800309
  8. Henrissat, B., I. Callebaut, S. Fabrega, P. Lehn, J. Mornon, and G. Davies. 1995. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc. Natl. Acad. Sci. USA 92: 7090-7094. https://doi.org/10.1073/pnas.92.15.7090
  9. Hoyoux, A., I. Jennes, P. Dubois, S. Genicot, F. Dubail, J. Francois, E. Baise, G. Feller, and C. Gerday. 2001. Coldadapted {beta}-galactosidase from the antarctic psychrophile Pseudoalteromonas haloplanktis. Appl. Environ. Microbiol. 67: 1529-1535. https://doi.org/10.1128/AEM.67.4.1529-1535.2001
  10. Karasova-Lipovova, P., H. Strnad, V. Spiwok, S. Mala, B. Kralova, and N. Russell. 2003. The cloning, purification and characterisation of a cold-active $\beta$-galactosidase from the psychrotolerant antarctic bacterium Arthrobacter sp. C2-2. Enz. Microb. Technol. 33: 836-844. https://doi.org/10.1016/S0141-0229(03)00211-4
  11. Loveland, J., K. Gutshall, J. Kasmir, P. Prema, and J. Brenchley. 1994. Characterization of psychrotrophic microorganisms producing beta-galactosidase activities. Appl. Environ. Microbiol. 60: 12-18.
  12. Margesin, R. and F. Schinner. 1994. Properties of cold-adapted microorganisms and their potential role in biotechnology. J. Biotechnol. 33: 1-14. https://doi.org/10.1016/0168-1656(94)90093-0
  13. Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  14. Nakagawa, T., Y. Fujimoto, R. Ikehata, T. Miyaji, and N. Tomizuka. 2006. Purification and molecular characterization of coldactive beta-galactosidase from Arthrobacter psychrolactophilus strain F2. Appl. Microbiol. Biotechnol. 72: 720-725. https://doi.org/10.1007/s00253-006-0339-0
  15. Nakagawa, T., Y. Fujimoto, M. Uchino, T. Miyaji, K. Takano, and N. Tomizuka. 2003. Isolation and characterization of psychrophiles producing cold-active-galactosidase. Lett. Appl. Microbiol. 37: 154-157. https://doi.org/10.1046/j.1472-765X.2003.01369.x
  16. Nakagawa, T., K. Yamada, T. Miyaji, and N. Tomizuka. 2002. Cold-active pectinolytic activity of psychrophilic-basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. J. Biosci. Bioengin. 94: 175-177. https://doi.org/10.1016/S1389-1723(02)80140-2
  17. Nichtl, A., J. Buchner, R. Jaenicke, R. Rudolph, and T. Scheibel. 1998. Folding and association of [beta]-galactosidase1. J. Molec. Biol. 282: 1083-1091. https://doi.org/10.1006/jmbi.1998.2075
  18. Seiboth, B., L. Hartl, N. Salovuori, K. Lanthaler, G. Robson, J. Vehmaanpera, M. Penttila, and C. Kubicek. 2005. Role of the bga1-encoded extracellular {beta}-galactosidase of Hypocrea jecorina in cellulase induction by lactose. Appl. Environ. microbiology 71: 851-857. https://doi.org/10.1128/AEM.71.2.851-857.2005
  19. Shukla, T. and L. Wierzbicki. 1975. Beta-galactosidase technology: A solution to the lactose problem. Crit. Rev. Food Sci. Nutr. 5: 325-356.
  20. Stricker, A., K. Grosstessner-Hain, E. Wurleitner, and R. Mach. 2006. Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot. Cell 5: 2128-2137.
  21. Trimbur, D., K. Gutshall, P. Prema, and J. Brenchley. 1994. Characterization of a psychrotrophic arthrobacter gene and its cold-active beta-galactosidase. Appl. Environ. Microbiol. 60: 4544-4552.
  22. Xiao, X., M. Li, Z. You, and F. Wang. 2007. Bacterial communities inside and in the vicinity of the Chinese Great Wall Station, King George Island, Antarctica. Antarctic Sci. 19: 11-16.
  23. Zahner, D. and R. Hakenbeck. 2000. The Streptococcus pneumoniae beta-galactosidase is a surface protein. J. Bacteriol. 182: 5919-5921. https://doi.org/10.1128/JB.182.20.5919-5921.2000

Cited by

  1. Cold active β-galactosidase from Thalassospira sp. 3SC-21 to use in milk lactose hydrolysis: a novel source from deep waters of Bay-of-Bengal vol.28, pp.9, 2011, https://doi.org/10.1007/s11274-012-1097-z
  2. Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi vol.13, pp.None, 2011, https://doi.org/10.1186/1472-6750-13-3
  3. The acid tolerant and cold-active β-galactosidase from Lactococcus lactis strain is an attractive biocatalyst for lactose hydrolysis vol.103, pp.4, 2013, https://doi.org/10.1007/s10482-012-9852-6
  4. A Novel Ratiometric Fluorescent Probe for Highly Sensitive and Selective Detection of β‐Galactosidase in Living Cells vol.37, pp.4, 2011, https://doi.org/10.1002/cjoc.201800539
  5. Enzymes from Marine Polar Regions and Their Biotechnological Applications vol.17, pp.10, 2011, https://doi.org/10.3390/md17100544
  6. A New β-Galactosidase from the Antarctic Bacterium Alteromonas sp. ANT48 and Its Potential in Formation of Prebiotic Galacto-Oligosaccharides vol.17, pp.11, 2019, https://doi.org/10.3390/md17110599
  7. Cold-Active β-Galactosidases: Insight into Cold Adaptation Mechanisms and Biotechnological Exploitation vol.19, pp.1, 2011, https://doi.org/10.3390/md19010043