참고문헌
- Ackerley, D. F., C. F. Gonzalez, M. Keyhan, R. Blake 2 nd , and A. Matin. 2004. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ. Microbiol. 6: 851-860. https://doi.org/10.1111/j.1462-2920.2004.00639.x
- Beinert, H., R. H. Holm, and E. Münck. 1997. Iron-sulfur clusters: Nature's modular, multipurpose structures. Science 277: 653-659. https://doi.org/10.1126/science.277.5326.653
- Beyersmann, D. and S. Hechtenberg. 1997. Cadmium, gene regulation, and cellular signaling in mammalian cells. Toxicol. Appl. Pharmacol. 144: 247-261. https://doi.org/10.1006/taap.1997.8125
- Blom, A., W. Harder, and A. Matin. 1992. Unique and overlapping pollutant stress proteins of Escherichia coli. Appl. Environ. Microbiol. 58: 331-334.
- Boschi-Muller, S., A. Olry, M. Antoine, and G. Branlant. 2005. The enzymology and biochemistry of methionine sulfoxide reductases. Biochim. Biophys. Acta 1703: 231-238. https://doi.org/10.1016/j.bbapap.2004.09.016
- Bulteau, A. L., L. I. Szweda, and B. Friguet. 2006. Mitochondrial protein oxidation and degradation in response to oxidative stress and aging. Exp. Gerontol. 41: 653-657. https://doi.org/10.1016/j.exger.2006.03.013
- Busenlehner, L. S., M. A. Pennela, and D. P. Giedroc. 2003. The SmtB/ArsR family of metalloregulatory transcriptional repressors: Structural insights into prokaryotic metal resistance. FEMS Microbiol. Rev. 27: 131-143. https://doi.org/10.1016/S0168-6445(03)00054-8
- Cox, M. M. and J. R. Battista. 2005. Deinococcus radiodurans - the consummate survivor. Nat. Rev. Microbiol. 3: 882-892. https://doi.org/10.1038/nrmicro1264
- Fahey, R. C. and A. R. Sundquist. 1991. Evolution of glutathione metabolism. Adv. Enzymol. 64: 1-53.
- Ferianc, P., A. Farewell, and T. Nystrom. 1998. The cadmiumstress stimulon of Escherichia coli K-12. Microbiology 144: 1045-1050. https://doi.org/10.1099/00221287-144-4-1045
- Foloppe, N. and L. Nilsson. 2004. The glutaredoxin -C-P-Y-Cmotif: Influence of peripheral residues. Structure 12: 289-300.
- Giaginis, C., E. Gatzidou, and S. Theocharis. 2006. DNA repair systems as targets of cadmium toxicity. Toxicol. Appl. Pharmacol. 213: 282-290. https://doi.org/10.1016/j.taap.2006.03.008
- Gomes, D. S., M. D. Pereira, A. D. Panek, L. R. Andrade, and E. C. Eleutherio. 2008. Apoptosis as a mechanism for removal of mutated cells of Saccharomyces cerevisiae: The role of Grx2 under cadmium exposure. Biochim. Biophys. Acta 1780: 160-166. https://doi.org/10.1016/j.bbagen.2007.09.014
- Gottesman, S. 2003. Proteolysis in bacterial regulatory circuits. Annu. Rev. Cell Dev. Biol. 19: 565-587. https://doi.org/10.1146/annurev.cellbio.19.110701.153228
- Hanson, P. I. and S. W. Whieheart. 2005. AAA+ proteins: Have engine, will work. Nat. Rev. Mol. Cell Biol. 6: 519-529.
- Helbig, K., C. Grosse, and D. H. Nies. 2008. Cadmium toxicity in glutathione mutants of Escherichia coli. J. Bacteriol. 190: 5439-5454. https://doi.org/10.1128/JB.00272-08
- Hochgrafe, F., J. Mostertz, D. Pöther, D. Becher, J. D. Helmann, and M. Hecker. 2007. S-Cysteinylation is a general mechanism for thiol protection of Bacillus subtilis proteins after oxidative stress. J. Biol. Chem. 282: 25981-25985. https://doi.org/10.1074/jbc.C700105200
- International Agency for Research on Cancer (IARC). 1993. IARC monographs on the evaluation of carcinogenic risks on humans: Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry, pp. 119-238. Lyon, France.
- Jin, Y. H., A. B. Clark, R. J. Slebos, H. Al-Refai, J. A. Taylor, T. A. Kunkel, M. A. Resnick, and D. A. Gordenin. 2003. Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat. Genet. 34: 326-329. https://doi.org/10.1038/ng1172
- Joe, M. H., S. Y. Lim, S. W. Jung, Y. J. Choi, B. Y. Lee, D. S. Song, J. W. Jung, S. H. Chae, and D. H. Kim. 2008. DNA microarray fabrication of Deinococcus radiodurans R1 for a global gene expression profiling. J. Radiat. Ind. 2: 53-58.
- Leichert, L. I., C. Scharf, and M. Hecker. 2003. Global characterization of disulfide stress in Bacillus subtilis. J. Bacteriol. 185: 1967-1975. https://doi.org/10.1128/JB.185.6.1967-1975.2003
-
Livak, K. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the
$2_T^{-AAC}$ method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262 - Malik, M., J. Capecci, and K. Drlica. 2009. Lon protease is essential for paradoxical survival of Escherichia coli exposed to high concentrations of quinolone. Antimicrob. Agents Chemother. 53: 3103-3105. https://doi.org/10.1128/AAC.00019-09
- Michaels, M. L. and J. H. Miller. 1992. The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J. Bacteriol. 174: 6321-6325.
-
Mitra, R. S. 1984. Protein synthesis in Escherichia coli during recovery from exposure to low levels of
$Cd^{2+}$ . Appl. Environ. Microbiol. 47: 1012-1016. -
Mitra, R. S. and I. A. Bernstein. 1978. Single-strand breakage in DNA of Escherichia coli exposed to
$Cd^{2+}$ . J. Bacteriol. 133: 75-80. - Mogk, A., R. Schmidt, and B. Bukau. 2007. The N-end rule pathway for regulated proteolysis: Prokaryotic and eukaryotic strategies. Trends Cell Biol. 17: 165-172. https://doi.org/10.1016/j.tcb.2007.02.001
- Momose, Y. and H. Iwahashi. 2001. Bioassay of cadmium using a DNA microarray: Genome-wide expression patterns of Saccharomyces cerevisiae response to cadmium. Environ. Toxicol. Chem. 20: 2353-2360.
- Nies, D. H. 1999. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51: 730-750. https://doi.org/10.1007/s002530051457
- Newton, G. L., K. Arnold, M. S. Price, C. Sherrill, S. B. Delcardayre, Y. Aharonowitz, et al. 1996. Distribution of thiols in microorganisms: Mycothiol is a major thiol in most actinomycetes. J. Bacteriol. 178: 1990-1995.
- Newton, G. L., M. Rawat, J. J. La Clair, V. K. Jothivasan, T. Budiarto, C. J. Hamilton, A. Claiborne, J. D. Helmann, and R. C. Fahey. 2009. Bacillithiol is an antioxidant thiol produced in bacilli. Nat. Chem. Biol. 5: 625-627. https://doi.org/10.1038/nchembio.189
- Nokhbeh, M. R., S. Boroumandi, N. Pokorny, P. Koziarz, E. S. Paterson, and I. B. Lambert. 2002. Identification and characterization of SnrA, an inducible oxygen-insensitive nitroreductase in Salmonella enterica serovar Typhimurium TA1535. Mutat. Res. 508: 59-70. https://doi.org/10.1016/S0027-5107(02)00174-4
- Quackenbush, J. 2002. Microarray data normalization and transformation. Nat. Genet. 32: 496-501. https://doi.org/10.1038/ng1032
- Rosen, B. P. 2002. Transport and detoxification systems for transition metals, heavy metals and methalloids in eukaryotic and prokaryotic microbes. Compar. Biochem. Physiol. Part A 133: 689-693. https://doi.org/10.1016/S1095-6433(02)00201-5
- Ruotolo, R., G. Marchini, and S. Ottonello. 2008. Membrane transporters and protein traffic networks differentially affecting metal tolerance: A genomic phenotyping study in yeast. Genome Biol. 9: R67.
- Slade, D., A. B. Lindner, G. Paul, and M. Radman. 2009. Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 136: 1044-1055. https://doi.org/10.1016/j.cell.2009.01.018
- Stohs, S. J. and D. Bagchi. 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18: 321-336. https://doi.org/10.1016/0891-5849(94)00159-H
- Tanaka, M., A. M. Earl, H. A. Howell, M. J. Park, J. A. Eisen, S. N. Peterson, and J. R. Battista. 2004. Analysis of Deinococcus radiodurans's transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics 168: 21-33. https://doi.org/10.1534/genetics.104.029249
- Thorsen, M., G. G. Perrone, E. Kristiansson, M. Traini, T. Ye, I. W. Dawes, O. Nerman, and M. J. Tamas. 2009. Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae. BMC Genomics 10: 105. https://doi.org/10.1186/1471-2164-10-105
- Tsilibaris, V., G. Maenhaut-Michel, and L. Van Melderen. 2006. Biological roles of the Lon ATP-dependent protease. Res. Microbiol. 157: 701-713. https://doi.org/10.1016/j.resmic.2006.05.004
- VanBogelen, R. A., P. M. Kelley, and F. C. Neidhardt. 1987. Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J. Bacteriol. 169: 26-32.
- Wang, A. and D. E. Crowley. 2005. Global gene expression responses to cadmium toxicity in Escherichia coli. J. Bacteriol. 187: 3259-3266. https://doi.org/10.1128/JB.187.9.3259-3266.2005
- Wang, L., G. Xu, H. Chen, Y. Zhao, N. Xu, B. Tian, and Y. Hua. 2008. DrRRA: A novel response regulator essential for the extreme radioresistance of Deinococcus radiodurans. Mol. Microbiol. 67: 1211-1222. https://doi.org/10.1111/j.1365-2958.2008.06113.x
-
Woodbury, R. L., T. Luo, L. Grant, and W. G. Haldenwang. 2004. Mutational analysis of RsbT, an activator of the Bacillus subtilis stress response transcription factor,
$\sigma^B$ . J. Bacteriol. 186: 2789-2797. https://doi.org/10.1128/JB.186.9.2789-2797.2004 -
Wu, Y., W. Chen, Y. Zhao, H. Xu, and Y. Hua. 2009. Involvement of RecG in
$H_2O_2$ -induced damage repair in Deinococcus radiodurans. Can. J. Microbiol. 55: 841-848. https://doi.org/10.1139/W09-028 - Yoshihara, T., H. Hodoshima, Y. Miyano, K. Shoji, H. Shimada, and F. Goto. 2006. Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell Rep. 25: 365-373. https://doi.org/10.1007/s00299-005-0092-3
피인용 문헌
- Genome-Wide Transcriptional Response of the Archaeon Thermococcus gammatolerans to Cadmium vol.7, pp.7, 2011, https://doi.org/10.1371/journal.pone.0041935
- Molecular Characterization of Copper and Cadmium Resistance Determinants in the Biomining Thermoacidophilic Archaeon Sulfolobus metallicus vol.2013, pp.None, 2011, https://doi.org/10.1155/2013/289236
- RNA helicases : Diverse roles in prokaryotic response to abiotic stress vol.10, pp.1, 2011, https://doi.org/10.4161/rna.22638
- Purification, crystallization and preliminary crystallographic investigation of FrnE, a disulfide oxidoreductase from Deinococcus radiodurans vol.70, pp.11, 2011, https://doi.org/10.1107/s2053230x14020330
- Deregulation of transition metals homeostasis is a key feature of cadmium toxicity in Salmonella vol.27, pp.4, 2014, https://doi.org/10.1007/s10534-014-9763-2
- Mechanisms of stress resistance and gene regulation in the radioresistant bacterium Deinococcus radiodurans vol.80, pp.10, 2011, https://doi.org/10.1134/s0006297915100016
- Oxidative stress response of Deinococcus geothermalis via a cystine importer vol.55, pp.2, 2011, https://doi.org/10.1007/s12275-017-6382-y
- An Investigation of Protective Effects of Litium Borate on Blood and Histopathological Parameters in Acute Cadmium-Induced Rats vol.182, pp.2, 2018, https://doi.org/10.1007/s12011-017-1089-9
- drFrnE Represents a Hitherto Unknown Class of Eubacterial Cytoplasmic Disulfide Oxido-Reductases vol.28, pp.4, 2011, https://doi.org/10.1089/ars.2016.6960
- Novel Sequence Features of DNA Repair Genes/Proteins from Deinococcus Species Implicated in Protection from Oxidatively Generated Damage vol.9, pp.3, 2018, https://doi.org/10.3390/genes9030149
- Gene function and expression regulation of RuvRCAB in bacterial Cr(VI), As(III), Sb(III), and Cd(II) resistance vol.103, pp.6, 2011, https://doi.org/10.1007/s00253-019-09666-6
- Single-molecule observation of ATP-independent SSB displacement by RecO in Deinococcus radiodurans vol.9, pp.None, 2011, https://doi.org/10.7554/elife.50945
- Construction, analysis and validation of co-expression network to understand stress adaptation in Deinococcus radiodurans R1 vol.15, pp.6, 2011, https://doi.org/10.1371/journal.pone.0234721
- Structural and Biochemical Characterization of Thioredoxin-2 from Deinococcus radiodurans vol.10, pp.11, 2011, https://doi.org/10.3390/antiox10111843